Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 27(23): 4931-4946, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30346097

RESUMO

It is unclear how sustained increases in temperature and changes in precipitation, as a result of climate change, will affect crops and their interactions with agricultural weeds, insect pests and predators, due to the difficulties in quantifying changes in such complex relationships. We simulated the combined effects of increasing temperature (by an average of 1.4°C over a growing season) and applying additional rainwater (10% of the monthly mean added weekly, 40% total) using a replicated, randomized block experiment within a wheat crop. We examined how this affected the structure of 24 quantitative replicate plant-aphid-parasitoid networks constructed using DNA-based methods. Simulated climate warming affected species richness, significantly altered consumer-resource asymmetries and reduced network complexity. Increased temperature induced an aphid outbreak, but the parasitism rates of aphids by parasitoid wasps remained unchanged. It also drove changes in the crop, altering in particular the phenology of the wheat as well as its quality (i.e., fewer, lighter seeds). We discuss the importance of considering the wider impacts of climate change on interacting species across trophic levels in agroecosystems.


Assuntos
Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Temperatura , Animais , Afídeos/parasitologia , Fazendas , Herbivoria , Triticum/crescimento & desenvolvimento , Vespas
2.
PLoS One ; 10(2): e0117872, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710377

RESUMO

A major challenge in network ecology is to describe the full-range of species interactions in a community to create highly-resolved food-webs. We developed a molecular approach based on DNA full barcoding and mini-barcoding to describe difficult to observe plant-leaf miner-parasitoid interactions, consisting of animals commonly regarded as agricultural pests and their natural enemies. We tested the ability of universal primers to amplify the remaining DNA inside leaf miner mines after the emergence of the insect. We compared the results of a) morphological identification of adult specimens; b) identification based on the shape of the mines; c) the COI Mini-barcode (130 bp) and d) the COI full barcode (658 bp) fragments to accurately identify the leaf-miner species. We used the molecular approach to build and analyse a tri-partite ecological network of plant-leaf miner-parasitoid interactions. We were able to detect the DNA of leaf-mining insects within their feeding mines on a range of host plants using mini-barcoding primers: 6% for the leaves collected empty and 33% success after we observed the emergence of the leaf miner. We suggest that the low amplification success of leaf mines collected empty was mainly due to the time since the adult emerged and discuss methodological improvements. Nevertheless our approach provided new species-interaction data for the ecological network. We found that the 130 bp fragment is variable enough to identify all the species included in this study. Both COI fragments reveal that some leaf miner species could be composed of cryptic species. The network built using the molecular approach was more accurate in describing tri-partite interactions compared with traditional approaches based on morphological criteria.


Assuntos
Código de Barras de DNA Taxonômico , Plantas/genética , Animais , Sequência de Bases , Primers do DNA/genética , Primers do DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cadeia Alimentar , Insetos/crescimento & desenvolvimento , Larva/fisiologia , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/parasitologia , Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...