Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(8): 2108-2121, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36644792

RESUMO

The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human-induced changes. Understanding how climate-mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8-year dataset (2013-2020), we show that inter-annual humpback whale pregnancy rates, as determined from skin-blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter-annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.


Assuntos
Euphausiacea , Jubarte , Animais , Humanos , Regiões Antárticas , Clima , Ecossistema , Dinâmica Populacional , Camada de Gelo
2.
R Soc Open Sci ; 9(7): 211674, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35814912

RESUMO

Antarctic humpback whales forage in summer, coincident with the seasonal abundance of their primary prey, the Antarctic krill. During the feeding season, humpback whales accumulate energy stores sufficient to fuel their fasting period lasting over six months. Previous animal movement modelling work (using area-restricted search as a proxy) suggests a hyperphagic period late in the feeding season, similar in timing to some terrestrial fasting mammals. However, no direct measures of seasonal foraging behaviour existed to corroborate this hypothesis. We attached high-resolution, motion-sensing biologging tags to 69 humpback whales along the Western Antarctic Peninsula throughout the feeding season from January to June to determine how foraging effort changes throughout the season. Our results did not support existing hypotheses: we found a significant reduction in foraging presence and feeding rates from the beginning to the end of the feeding season. During the early summer period, feeding occurred during all hours at high rates. As the season progressed, foraging occurred mostly at night and at lower rates. We provide novel information on seasonal changes in foraging of humpback whales and suggest that these animals, contrary to nearly all other animals that seasonally fast, exhibit high feeding rates soon after exiting the fasting period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...