Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(17): 174301, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347691

RESUMO

Using infrared predissociation spectroscopy of cryogenic ions, we revisit the vibrational spectra of alkali metal ion (Li+, Na+, K+) di- and triglycine complexes. We assign their most stable conformation, which involves metal ion coordination to all C=O groups and an internal NH⋯NH2 hydrogen bond in the peptide backbone. An analysis of the spectral shifts of the OH and C=O stretching vibrations across the different metal ions and peptide chain lengths shows that these are largely caused by the electric field of the metal ion, which varies in strength as a function of the square of the distance. The metal ion-peptide interaction also remotely modulates the strength of internal hydrogen bonding in the peptide backbone via the weakening of the amide C=O bond, resulting in a decrease in internal hydrogen bond strength from Li+ > Na+ > K+.


Assuntos
Hidrogênio , Metais Alcalinos , Ligação de Hidrogênio , Vibração , Metais Alcalinos/química , Íons/química , Metais/química , Sódio/química , Ácido Nitrilotriacético , Peptídeos/química
2.
J Phys Chem Lett ; 13(8): 2046-2050, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236072

RESUMO

This Viewpoint presents a re-examination of the conclusions of a study reported in The Journal of Physical Chemistry Letters (Saparbaev, et al. 2021, 12, 907) that compared the structure of microsolvated ions formed by electrospray ionization to those formed in the gas-phase via a previously published cryogenic ion trap approach. We conducted additional experiments that clearly show that most of the observed differences in the IR spectra can be accounted for by considering the different spectroscopic action schemes used to obtain them. In particular, the presence of the D2-tag induces shifts in some of the N-H and O-H peaks which need to be carefully considered before comparing spectra. Once these spectral effects are taken into account, we show that both clustering approaches yield similar cluster structures for the small GlyH+(H2O)n species. Using unimolecular reaction rate theory, we also show that for the small complexes considered here, only the gas-phase equilibrium distribution of conformers should be expected in both experimental approaches. In addition, the barrier heights necessary to kinetically trap high-energy conformers at 298 K is explored using a series of model polyalanine chains.


Assuntos
Espectrofotometria Infravermelho , Íons
3.
J Am Soc Mass Spectrom ; 30(11): 2267-2277, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31506909

RESUMO

Atmospheric new particle formation (NPF) is the process by which atmospheric trace gases such as sulfuric acid, ammonia, and amines cluster and grow into climatically relevant particles. The mechanism by which these particles form and grow has remained unclear, in large part due to difficulties in obtaining molecular-level information about the clusters as they grow. Mass spectrometry-based methods using electrospray ionization (ESI) as a cluster source have shed light on this process, but the produced cluster distributions have not been rigorously validated against experiments performed in atmospheric conditions. Ionic clusters are produced by ESI of solutions containing the amine and bisulfate or by spraying a sulfuric acid solution and introducing trace amounts of amine gas into the ESI environment. The amine content of clusters can be altered by increasing the amount of amine introduced into the ESI environment, and certain cluster compositions can only be made by the vapor exchange method. Both approaches are found to yield clusters with the same structures. Aminium bisulfate cluster distributions produced in a controlled and isolated ESI environment can be optimized to closely resemble those observed by chemical ionization in the CLOUD chamber at CERN. These studies indicate that clusters generated by ESI are also observed in traditional atmospheric measurements, which puts ESI mass spectrometry-based studies on firmer footing and broadens the scope of traditional mass spectrometry experiments that may be applied to NPF.

4.
J Phys Chem A ; 123(33): 7261-7269, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31403804

RESUMO

A combined experimental and computational study of H2 reactions with small 98MoxSy- clusters ranging from subsulfide (x ∼ y) to hypersulfide (y > 2x) is presented. Results suggest that the subsulfides react with H2 primarily by insertion of a more reduced Mo center into the H-H bond, forming a dihydride product. We find that this reaction occurs up to Mo oxidation states of +4. For the subsulfides containing a second metal in a sufficiently low oxidation state, a second insertion of H2 occurs, leading to a tetrahydride product. The reaction mechanisms of the sulfides are found to be very similar, albeit slightly higher energetically to those of the analogous oxosulfides that are also observed at low abundances in the experiments. In addition, the experimental results show an overall reduction of hypersulfides in the presence of H2, suggesting loss of H2S neutral molecules.

5.
J Phys Chem Lett ; 9(6): 1216-1222, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29464955

RESUMO

Acid-base cluster chemistry drives atmospheric new particle formation (NPF), but the details of the growth mechanisms are difficult to experimentally probe. Clusters of ammonia, alkylamines, and sulfuric acid, species fundamental to NPF, are probed by infrared spectroscopy. These spectra show that substitution of amines for ammonia, which is linked to accelerated growth, induces profound structural rearrangement in clusters with initial compositions (NH4+) n+1(HSO4-) n (1 ≤ n ≤ 3). This rearrangement is driven by the loss of N-H hydrogen bond donors, yielding direct bisulfate-bisulfate hydrogen bonds, and its onset with respect to cluster composition indicates that more substituted amines induce rearrangement at smaller sizes. A simple model counting hydrogen bond donors and acceptors explains these observations. The presence of direct hydrogen bonds between formal anions shows that hydrogen bonding can compete with Coulombic forces in determining cluster structure. These results suggest that NPF mechanisms may be highly dependent on amine identity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...