Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cancer ; 43(16): 2373-80, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17728127

RESUMO

The exon 1 of the human androgen receptor gene (AR) contains both CAG (polyglutamine) and GGN (polyglycine) repeat length polymorphisms. Large CAG repeats have been related to an increased risk of breast cancer (BC), whereas the influence of the GGN repeats is still unclear. Here, we have studied how the length of CAG and GGN repeats is associated with the risk of BC in a population from Tenerife (Canary Islands, Spain). The study was carried out on 257 woman diagnosed with BC and 393 controls, nesting in the 'CDC of the Canary Islands' cohort study. The AR CAG and GGN genotyping was performed by means of PCR amplification with specific fluorescently labelled primers followed by a capillary electrophoresis. The allelic distribution of CAG and GGN polymorphisms was similar in cases and controls. The mean of short and long CAG and GGN alleles did not show differences between cases and controls and the same was true when the average length of both CAG alleles (CAG(n)) and GGN alleles (GGN(n)) was considered. However, when CAG(n) and GGN(n) were categorised using 22 and 24 repeats as the cut-off point, respectively, significant differences between cases and controls were observed. The CAG(n)>22 repeats were more frequent in cases than in controls, being associated with an increased risk of BC (OR=1.49; CI(95%)=1.06-2.09; p=0.021). No significant differences were found for categorised GGN(n). For CAG(n)/GGN(n) combinations, the highest BC risk was found to be associated with the CAG(n)>22/GGN(n)24 combination (OR=2.47; CI(95%)=1.37-4.46; p=0.003). In conclusion, our results indicate that longer CAG(n)/GGN(n) combinations increase the risk of BC and suggest that CAG and GGN AR polymorphisms should be considered in order to assess the BC risk.


Assuntos
Neoplasias da Mama/genética , Genes BRCA1/fisiologia , Genes BRCA2/fisiologia , Polimorfismo Genético/genética , Receptores Androgênicos/genética , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Fatores de Risco
2.
J Steroid Biochem Mol Biol ; 105(1-5): 1-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17631997

RESUMO

Aromatase (CYP19) converts adrenal and ovarian androgens into estrogens, which supports the growth of estrogen-dependent breast cancers. Anti-aromatase agents are displacing antiestrogens as the first-line treatment for estrogen receptor positive breast cancers. Androgens can act as estrogen precursors, but besides this capability they can also directly act on breast cancer cells by binding to androgen receptors, which are present in the majority of breast cancer specimens. Epidemiological and clinical evidences suggest that higher levels of circulating androgen increase the risk of developing breast cancer. Androgen receptor gene polymorphisms which render the more transcriptionally active receptors have been related to a lower risk of breast cancer. It is currently accepted that androgens act as antiproliferative agents in the presence of estrogens in some breast cancer cell lines. However, emerging evidence suggests that direct androgenic activity might also stimulate cell growth in a subset of estrogen-resistant breast tumors. Here we discuss the supporting evidence which proposes that androgens themselves are actively involved in breast carcinogenesis and its clinical behaviour.


Assuntos
Androgênios/fisiologia , Neoplasias da Mama/fisiopatologia , Receptores Androgênicos/fisiologia , Progressão da Doença , Humanos , Polimorfismo Genético , Receptores Androgênicos/genética , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...