Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 3(1): vdab030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948561

RESUMO

BACKGROUND: Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial-mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis. METHODS: A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA. RESULTS: Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05). CONCLUSIONS: In this study, we identified a TWIST1-ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.

3.
Oncotarget ; 8(44): 76606-76621, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100335

RESUMO

The tumour and neuron interaction has a significant impact upon disease progression and the patients quality of life. In breast cancer patients, it is known that there is an interaction between the tumour microenvironment and the sensory neurons to influence the progression of cancer as well as pain, though these mechanisms still need to be clearly defined. Here it is demonstrated that in a rodent orthotopic model of breast cancer (MDA MB 231) there was an increase in nerve fibre innervation into the tumour microenvironment (protein gene product 9.5), which were calcitonin gene related peptide positive C fibre nociceptors. In contrast, there was a reduction in myelinated nerve fibres (NF200). A sensory neuronal cell line was cultured in response to conditioned media from MDA MB231 and MCF7 as well as vascular endothelial growth factor-A (VEGF-A). All these experimental conditions induced sensory neuronal growth, with increased formation of collateral axonal branches. Furthermore, it was demonstrated that MDA MB231 and VEGF-A induced sensory neuronal sensitisation in response to capsaicin a TRPV1 agonist. MDA MB231 induced neuronal growth was suppressed by VEGFR2 inhibition (ZM323881 and neutralising antibody DC101), in addition both MDA MB231 and VEGF-A induced neurite growth was attenuated by the inhibition of ARP2/3 complex through co-treatment with CK666. This demonstrates that breast cancer can interact with the sensory nervous system to drive neuritogenesis through a VEGF-A/VEGFR2/ARP2/3 mediated pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...