Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 53(51): 8021-30, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25437272

RESUMO

The unique architecture of the active site of Thermobifida fusca truncated hemoglobin (Tf-trHb) and other globins belonging to the same family has stimulated extensive studies aimed at understanding the interplay between iron-bound ligands and distal amino acids. The behavior of the heme-bound hydroxyl, in particular, has generated much interest in view of the relationships between the spin-state equilibrium of the ferric iron atom and hydrogen-bonding capabilities (as either acceptor or donor) of the OH(-) group itself. The present investigation offers a detailed molecular dynamics and spectroscopic picture of the hydroxyl complexes of the WT protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. Each mutant is characterized by a complex interplay of interactions in which the hydroxyl ligand may act both as a H-bond donor or acceptor. The resonance Raman stretching frequencies of the Fe-OH moiety, together with electron paramagnetic resonance spectra and MD simulations on each mutant, have enabled the identification of specific contributions to the unique ligand-inclusive H-bond network typical of this globin family.


Assuntos
Actinomycetales/química , Proteínas de Bactérias/química , Hemoglobinas Truncadas/química , Actinomycetales/genética , Actinomycetales/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise Espectral Raman , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo
2.
PLoS One ; 8(3): e58842, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555601

RESUMO

Human serum albumin (HSA), the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s). As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i) of carbon monoxide (CO) binding to ferrous human serum heme-albumin (HSA-heme-Fe(II)) by warfarin (WF), and (ii) of WF binding to HSA-heme-Fe(II) by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II), respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands). This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II). The HSA-heme-Fe(II) populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i) upon CO binding a conformational change of HSA-heme-Fe(II) takes place (likely reflecting the displacement of an endogenous ligand by CO), and (ii) CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II) population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II).


Assuntos
Monóxido de Carbono/metabolismo , Compostos Ferrosos/metabolismo , Heme/metabolismo , Albumina Sérica/metabolismo , Varfarina/metabolismo , Regulação Alostérica , Compostos Ferrosos/química , Heme/química , Humanos , Cinética , Ligação Proteica , Albumina Sérica/química , Termodinâmica , Varfarina/química
3.
Biochim Biophys Acta ; 1834(9): 1901-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23467007

RESUMO

The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN(-) have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe-OH(-) and Fe-CN(-) frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH(-) ligand, CN(-) binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Assuntos
Actinomycetales/metabolismo , Cianetos/metabolismo , Hemoglobinas/metabolismo , Hidróxidos/metabolismo , Domínio Catalítico , Heme/metabolismo , Hemoglobinas/genética , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Análise Espectral Raman , Tirosina/genética , Tirosina/metabolismo , Água/metabolismo
4.
PLoS One ; 7(12): e44508, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226490

RESUMO

The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin, but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded, hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish neuroglobins can reversibly bind oxygen and CO in the Fe(2+) form, and show six-coordination by distal His in the absence of exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins.Comparison of structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins, hemoglobin and myoglobin, in the same organisms.


Assuntos
Técnicas de Inativação de Genes , Globinas/fisiologia , Hemoglobinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Biofísica , Monóxido de Carbono/metabolismo , Peixes , Globinas/genética , Hemoglobinas/genética , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Neuroglobina , Espectrofotometria Ultravioleta , Análise Espectral Raman
5.
J Biol Inorg Chem ; 17(1): 133-47, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21894504

RESUMO

Human serum albumin (HSA), the most prominent protein in plasma, is best known for its exceptional ligand binding capacity. HSA participates in heme scavenging by binding the macrocycle at fatty acid site 1. In turn, heme endows HSA with globin-like reactivity and spectroscopic properties. A detailed pH-dependent kinetic and spectroscopic investigation of iron(II) heme-HSA and of its carbonylated form is reported here. Iron (II) heme-HSA is a mixture of a four-coordinate intermediate-spin species (predominant at pH 5.8 and 7.0), a five-coordinate high-spin form (mainly at pH 7.0), and a six-coordinate low-spin species (predominant at pH 10.0). The acidic-to-alkaline reversible transition reflects conformational changes leading to the coordination of the heme Fe(II) atom by the His146 residue via its nitrogen atom, both in the presence and in the absence of CO. The presence of several species accounts for the complex, multiexponential kinetics observed and reflects the very slow interconversion between the different species observed both for CO association to the free iron(II) heme-HSA and for CO dissociation from CO-iron(II) heme-HSA as a function of pH.


Assuntos
Monóxido de Carbono/química , Compostos Ferrosos/química , Heme/química , Albumina Sérica/química , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Análise Espectral Raman
6.
J Am Chem Soc ; 133(51): 20970-80, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22091531

RESUMO

The structural and functional properties of the active site of the bacterial hemoglobin from Thermobifida fusca are largely determined by three polar amino acids: TrpG8, TyrCD1, and TyrB10. We have exploited the availability of a combinatorial set of mutants, in each of which these three amino acids have been singly, doubly, or triply replaced by a Phe residue, to perform a detailed study on H-bonding interactions between the protein and heme-bound fluoride. By appropriate choice of the excitation conditions, ν(Fe-F) stretching bands have been detected in the resonance Raman spectra. In the wild-type protein and one of the mutants, two ν(Fe-F) bands have been observed and assigned to the presence of two protein conformers where fluoride is singly or doubly H-bonded. Furthermore, by plotting the CT1 charge-transfer transition energy vs the ν(Fe-F) wavenumbers, an empirical correlation has been found. The data are well fitted by a straight line with a positive slope. The position along the correlation line can be considered as a novel, general spectroscopic indicator of the extent of H-bonding in the active site of heme proteins. In agreement with the spectroscopic results, we have observed that the rate of ligand dissociation in stopped-flow kinetic measurements progressively increases upon substitution of the H-bonding amino acids. Molecular dynamics simulations have been performed on the fluoride complexes of native and mutated forms, indicating the prevalent interactions at the active site. All the techniques yield evidence that TrpG8 and TyrCD1 can form strong H bonds with fluoride, whereas TyrB10 plays only a minor role in the stabilization of the ligand.


Assuntos
Actinomycetales/metabolismo , Proteínas de Bactérias/metabolismo , Fluoretos/metabolismo , Hemoglobinas Truncadas/metabolismo , Actinomycetales/química , Actinomycetales/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Espectrofotometria , Análise Espectral Raman , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/genética
7.
J Inorg Biochem ; 105(10): 1338-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21867665

RESUMO

Fluoride complexes of heme proteins are characterized by unique spectroscopic properties, that provide a simple and direct means to monitor the interactions of the distal heme pocket environment with the iron-bound ligand. In particular, a strong correlation has been demonstrated between the wavelength of the iron-porphyrin charge transfer band at 600-620nm (CT1) and the strength of H-bonding donation from the distal amino acid side chains to the fluoride ion. In parallel, resonance Raman spectra with excitation within either the CT1 band or the charge transfer band at 450-460nm (CT2) have revealed that the iron-fluoride stretching frequency is directly affected by H-bonding to the fluoride ion. On this basis, globins and peroxidases display distinct spectroscopic features, which are strongly dependent on the capability of their distal residues (i.e. histidine, arginine and tryptophan) to be involved in H-bonding with the ligand. In particular, in peroxidases strong H-bonding corresponds to a low iron-fluoride stretching frequency and to a red-shifted CT1 band. The reverse is observed in myoglobin. Interestingly, a truncated hemoglobin of microbial origin (Thermobifida fusca) investigated in the present work, displays the specific spectroscopic signature of a peroxidase, in agreement with the presence of strong H-bonding residues, i.e., tyrosine and tryptophan, within the distal pocket.


Assuntos
Fluoretos/química , Hemeproteínas/química , Ligação de Hidrogênio , Ligação Proteica , Análise Espectral Raman , Hemoglobinas Truncadas/química
8.
J Biol Inorg Chem ; 16(4): 611-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21298302

RESUMO

Dehaloperoxidase-hemoglobin (DHP) is a unique multifunctional enzyme with a globin fold. The enzyme serves as the respiratory hemoglobin for the marine worm Amphitrite ornata and has been shown to catalyze the conversion of highly toxic trihalophenols to dihaloquinones as a detoxification function for the organism. Given the simplicity of the structure of A. ornata, it is entirely possible that DHP may play an even more general role in detoxification of the organism from sulfide commonly found in the coastal estuaries where A. ornata thrives. Comparison of DHP with other sulfide-binding hemoglobins shows that DHP possesses several distal cavity structural properties, such as an aromatic cage and a hydrogen-bond-donor amino acid (His55), that facilitate sulfide binding. Furthermore, a complete reduction of the ferric heme occurs after sulfide exposure under aerobic or anaerobic conditions to yield either the oxy or the deoxy ferrous states of DHP, respectively. Oxidation of sulfide by the heme leads to sulfur products that are less toxic to A. ornata. This proposed new function for DHP relies on the highly flexible distal His55 for deprotonation of the bound hydrogen sulfide, similar to H(2)O(2) activation of the peroxidase function, and provides further support for the importance of the flexibility of the distal His55 in this novel globin.


Assuntos
Hemoglobinas/metabolismo , Peroxidase/metabolismo , Poliquetos/enzimologia , Sulfetos/metabolismo , Animais , Sítios de Ligação , Biocatálise , Modelos Moleculares , Oxirredução , Poliquetos/química
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 11): 1536-40, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045316

RESUMO

The blood of the sub-Antarctic fish Eleginops maclovinus (Em) contains three haemoglobins. The major haemoglobin (Hb1Em) displays the Root effect, a drastic decrease in the oxygen affinity and a loss of cooperativity at acidic pH. The carbomonoxy form of HbEm1 has been crystallized in two different crystal forms, orthorhombic (Ortho) and hexagonal (Hexa), and high-resolution diffraction data have been collected for both forms (1.45 and 1.49 Šresolution, respectively). The high-frequency resonance Raman spectra collected from the two crystal forms using excitation at 514 nm were almost indistinguishable. Hb1Em is the first sub-Antarctic fish Hb to be crystallized and its structural characterization will shed light on the molecular mechanisms of cold adaptation and the role of the Root effect in fish haemoglobins.


Assuntos
Carboxihemoglobina/química , Perciformes , Animais , Cristalização , Cristalografia por Raios X , Análise Espectral Raman
10.
Biophys J ; 99(5): 1586-95, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20816071

RESUMO

Dehaloperoxidase (DHP) from the annelid Amphitrite ornata is a catalytically active hemoglobin-peroxidase that possesses a unique internal binding cavity in the distal pocket above the heme. The previously published crystal structure of DHP shows 4-iodophenol bound internally. This led to the proposal that the internal binding site is the active site for phenol oxidation. However, the native substrate for DHP is 2,4,6-tribromophenol, and all attempts to bind 2,4,6-tribromophenol in the internal site under physiological conditions have failed. Herein, we show that the binding of 4-halophenols in the internal pocket inhibits enzymatic function. Furthermore, we demonstrate that DHP has a unique two-site competitive binding mechanism in which the internal and external binding sites communicate through two conformations of the distal histidine of the enzyme, resulting in nonclassical competitive inhibition. The same distal histidine conformations involved in DHP function regulate oxygen binding and release during transport and storage by hemoglobins and myoglobins. This work provides further support for the hypothesis that DHP possesses an external binding site for substrate oxidation, as is typical for the peroxidase family of enzymes.


Assuntos
Halogenação , Hemoglobinas/metabolismo , Iodobenzenos/metabolismo , Iodobenzenos/farmacologia , Peroxidases/antagonistas & inibidores , Peroxidases/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Hemoglobinas/química , Iodobenzenos/química , Cinética , Modelos Moleculares , Peroxidases/química , Poliquetos/enzimologia , Análise Espectral Raman
11.
Biochemistry ; 49(10): 2269-78, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20102180

RESUMO

The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high affinity for hydrogen sulfide (K = 5.0 x 10(6) and 2.8 x 10(6) M(-1) for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though lower with respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 x 10(8) M(-1)). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH(-)-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH(-) whereas the YCD1 and YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron low-spin derivative. In analogy with other low-spin ferric sulfide adducts, the strong band at 375 cm(-1) is tentatively assigned to a Fe-S stretching band. The high affinity for hydrogen sulfide is thought to have a possible physiological significance as H(2)S is produced in bacteria at metabolic steps involved in cysteine biosynthesis and hence in thiol redox homeostasis.


Assuntos
Actinomycetales , Bacillus subtilis , Proteínas de Bactérias/metabolismo , Sulfetos/metabolismo , Hemoglobinas Truncadas/metabolismo , Proteínas de Bactérias/química , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Espectrofotometria Ultravioleta , Sulfetos/química , Termodinâmica , Hemoglobinas Truncadas/química
12.
Biochemistry ; 49(9): 1903-12, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20073507

RESUMO

The present work highlights the important role played by the distal histidine in controlling the binding of heme ligands in dehaloperoxidase (DHP) as compared to myoglobin and peroxidases. In DHP the distal histidine is highly mobile and undergoes a conformational change that places it within hydrogen-bonding distance of anionic ligands and water, where strong hydrogen bonding can occur. The detailed resonance Raman (RR) analysis at room temperature shows the presence of an equilibrium between a 5-coordinate and a 6-coordinate (aquo) high-spin form. The equilibrium shifts toward the aquo form at 12 K. These two forms are consistent with the existing X-ray structures where a closed conformation, with His55 positioned in the distal pocket and H-bonded with the distal water molecule (6-coordinate), and an open solvent-exposed conformation, with the His55 displaced from the distal pocket (5-coordinate form), are in equilibrium. Moreover, the comparison between the Raman data at 298 and 12 K and the results obtained by EPR of DHP in the presence of 4-iodophenol highlights the formation of a pure 5-coordinate high-spin form (open conformation). The data reported herein support the role of His55 in facilitating the interaction of substrate and inhibitor in the regulation of enzyme function, as previously suggested. The two conformations of His55 in equilibrium at room temperature provide a level of control that permits the distal histidine to act as both the acid-base catalyst in the peroxidase mechanism and the stabilizing amino acid for exogenous heme-coordinated ligands.


Assuntos
Hemoglobinas/química , Histidina/química , Peroxidases/química , Poliquetos/enzimologia , Animais , Estabilidade Enzimática , Compostos Férricos/química , Hemoglobinas/antagonistas & inibidores , Hemoglobinas/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Peroxidases/antagonistas & inibidores , Peroxidases/metabolismo , Ligação Proteica , Conformação Proteica , Espectrofotometria , Análise Espectral Raman , Especificidade por Substrato
13.
J Biol Chem ; 284(45): 31006-17, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19734142

RESUMO

Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO(3)(-) catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 degrees C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO(2); the values of the second order catalytic rate constant (k(on)) are 4.1 x 10(5) and 4.5 x 10(5) m(-1) s(-1), respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of k(on) (pK(a) = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO(2). The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO(2), ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 x 10(-4) and 9.7 x 10(-4) m. Under conditions where [ibuprofen] is >>L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role of HSA-heme-Fe(III) in vivo.


Assuntos
Heme/química , Ibuprofeno/química , Ácido Peroxinitroso/química , Albumina Sérica/química , Regulação Alostérica , Humanos , Isomerismo , Cinética , Conformação Molecular , Ligação Proteica , Conformação Proteica
14.
J Am Chem Soc ; 130(35): 11677-88, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-18681435

RESUMO

Human serum albumin (HSA), the most prominent protein in blood plasma, is able to bind a wide range of endogenous and exogenous compounds. Among the endogenous ligands, HSA is a significant transporter of heme, the heme-HSA complex being present in blood plasma. Drug binding to heme-HSA affects allosterically the heme affinity for HSA and vice versa. Heme-HSA, heme, and their complexes with ibuprofen have been characterized by electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy. Comparison of the results for the heme and heme-HSA systems has provided insight into the structural consequences on the heme pocket of ibuprofen binding. The pentacoordinate tyrosine-bound heme coordination of heme-HSA, observed in the absence of ibuprofen, becomes hexacoordinate low spin upon ibuprofen binding, and heme dissociates at increasing drug levels. The electronic absorption spectrum and nu(Fe-CO)/nu(CO) vibrational frequencies of the CO-heme-HSA-ibuprofen complex, together with the observation of a Fe-His Raman mode at 218 cm(-1) upon photolysis of the CO complex and the low spin EPR g values indicate that a His residue is one of the low spin axial ligands, the sixth ligand probably being Tyr161. The only His residue in the vicinity of the heme Fe atom is His146, 9 A distant in the absence of the drug. This indicates that drug binding to heme-HSA results in a significant rearrangement of the heme pocket, implying that the conformational adaptability of HSA involves more than the immediate vicinity of the drug binding site. As a whole, the present spectroscopic investigation supports the notion that HSA could be considered as the prototype of monomeric allosteric proteins.


Assuntos
Heme/química , Ibuprofeno/química , Albumina Sérica/química , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/química , Compostos Ferrosos/química , Humanos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...