Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1391957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903189

RESUMO

Introduction: Numerical modeling of the intervertebral disc (IVD) is challenging due to its complex and heterogeneous structure, requiring careful selection of constitutive models and material properties. A critical aspect of such modeling is the representation of annulus fibers, which significantly impact IVD biomechanics. This study presents a comparative analysis of different methods for fiber reinforcement in the annulus fibrosus of a finite element (FE) model of the human IVD. Methods: We utilized a reconstructed L4-L5 IVD geometry to compare three fiber modeling approaches: the anisotropic Holzapfel-Gasser-Ogden (HGO) model (HGO fiber model) and two sets of structural rebar elements with linear-elastic (linear rebar model) and hyperelastic (nonlinear rebar model) material definitions, respectively. Prior to calibration, we conducted a sensitivity analysis to identify the most important model parameters to be calibrated and improve the efficiency of the calibration. Calibration was performed using a genetic algorithm and in vitro range of motion (RoM) data from a published study with eight specimens tested under four loading scenarios. For validation, intradiscal pressure (IDP) measurements from the same study were used, along with additional RoM data from a separate publication involving five specimens subjected to four different loading conditions. Results: The sensitivity analysis revealed that most parameters, except for the Poisson ratio of the annulus fibers and C01 from the nucleus, significantly affected the RoM and IDP outcomes. Upon calibration, the HGO fiber model demonstrated the highest accuracy (R2 = 0.95), followed by the linear (R2 = 0.89) and nonlinear rebar models (R2 = 0.87). During the validation phase, the HGO fiber model maintained its high accuracy (RoM R2 = 0.85; IDP R2 = 0.87), while the linear and nonlinear rebar models had lower validation scores (RoM R2 = 0.71 and 0.69; IDP R2 = 0.86 and 0.8, respectively). Discussion: The results of the study demonstrate a successful calibration process that established good agreement with experimental data. Based on our findings, the HGO fiber model appears to be a more suitable option for accurate IVD FE modeling considering its higher fidelity in simulation results and computational efficiency.

2.
Comput Biol Med ; 169: 107851, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113683

RESUMO

Anterior Vertebral Body Tethering (VBT) is a novel fusionless treatment option for selected adolescent idiopathic scoliosis patients which is gaining widespread interest. The primary objective of this study is to investigate the effects of tether pre-tension within VBT on the biomechanics of the spine including sagittal and transverse parameters as well as primary motion, coupled motion, and stresses acting on the L2 superior endplate. For that purpose, we used a calibrated and validated Finite Element model of the L1-L2 spine. The VBT instrumentation was inserted on the left side of the L1-L2 segment with different cord pre-tensions and submitted to an external pure moment of 6 Nm in different directions. The range of motion (ROM) for the instrumented spine was measured from the initial post-VBT position. The magnitudes of the ROM of the native spine and VBT-instrumented with pre-tensions of 100 N, 200 N, and 300 N were, respectively, 3.29°, 2.35°, 1.90° and 1.61° in extension, 3.30°, 3.46°, 2.79°, and 2.17° in flexion, 2.11°, 1.67°, 1.33° and 1.06° in right axial rotation, and 2.10°, 1.88°, 1.48° and 1.16° in left axial rotation. During flexion-extension, an insignificant coupled lateral bending motion was observed in the native spine. However, VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generated coupled right lateral bending of 0.85°, 0.81°, and 0.71° during extension and coupled left lateral bending of 0.32°, 0.24°, and 0.19° during flexion, respectively. During lateral bending, a coupled extension motion of 0.33-0.40° is observed in the native spine, but VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generates coupled flexion of 0.67°, 0.58°, and 0.42° during left (side of the implant) lateral bending and coupled extension of 1.28°, 1.07°, and 0.87° during right lateral bending, respectively. Therefore, vertebral body tethering generates coupled motion. Tether pre-tension within vertebral body tethering reduces the motion of the spine.


Assuntos
Escoliose , Corpo Vertebral , Humanos , Adolescente , Análise de Elementos Finitos , Coluna Vertebral , Rotação , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Vértebras Lombares
3.
Ann Biomed Eng ; 51(6): 1244-1255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36709233

RESUMO

Extended-duration cyclic loading of the spine is known to be correlated to lower back pain (LBP). Therefore, it is important to understand how the loading history affects the entire structural behavior of the spine, including the viscoelastic effects. Six human spinal segments (L4L5) were loaded with pure moments up to 7.5 Nm cyclically for half an hour, kept unloaded for 15 min, and loaded with three cycles. This procedure was performed in flexion-extension (FE), axial rotation (AR), and lateral bending (LB) and repeated six times per direction for a total of 18 h of testing per segment. A Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) was trained to predict the change in the biomechanical response under cyclic loading. A strong positive correlation between the total testing time and the ratio of the third cycle to the last cycle of the loading sequence was found (BT: [Formula: see text] =  0.3469, p = 0.0003, RT: [Formula: see text] =0.1988, p  =   0.0377). The moment-range of motion (RoM) curves could be very well predicted with an RNN ([Formula: see text]=0.988), including the correlation between testing time and testing temperature as inputs. This study shows successfully the feasibility of using RNNs to predict changing moment-RoM curves under cyclic moment loading.


Assuntos
Vértebras Lombares , Humanos , Temperatura , Fenômenos Biomecânicos/fisiologia , Vértebras Lombares/fisiologia , Amplitude de Movimento Articular/fisiologia , Rotação , Cadáver
4.
Eur J Med Res ; 27(1): 270, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463220

RESUMO

BACKGROUND: The surgical treatment of inferior patellar pole fractures can be a challenge, especially in geriatric patients, who are particularly frequently affected by osteoporosis. The objective of this biomechanical study was to compare the performance of suture anchor and transosseous suture fixation in fractures of the inferior patellar pole in context of bone mineral density. METHODS: Twelve fresh-frozen human cadaveric knees received a transverse osteotomy, simulating an AO/OTA 34C1.3 inferior pole fracture of the patella. These fractures were fixated with either suture anchors (SA; Corkscrew® FT 4.5 mm) or transosseous suture (TS; #2 FiberWire®). Cyclic loading tests were performed by pulling the quadriceps tendon against gravity from 90° flexion to almost full extension (5°) for 1000 cycles. Motion and fracture gap displacement were tracked until failure occurred. Subsequently, loading to failure tests followed. Differences between groups were compared using unpaired t-tests, and correlations were calculated with Pearson's correlation coefficient. RESULTS: The suture anchor group showed significantly fewer cycles to failure than the transosseous suture group (SA: 539.0 ± 465.6 cycles, TS: 1000 ± 0 cycles, P = 0.04). Bone mineral density correlated positively with cycles to failure in the suture anchor group (Pearson's r = 0.60, P = 0.02). No differences in fracture gap displacement could be proven after 100 cycles (SA: 4.1 ± 2.6 mm, TS: 6.5 ± 2.6 mm, P = 0.19); 500 cycles (SA: 6.4 ± 6.1 mm, TS: 9.6 ± 3.8 mm, P = 0.39); and 1000 cycles (SA: 4.0 ± 0.4 mm, TS: 11.0 ± 4.5 mm, P = 0.08). Furthermore, the mean destructive load to failure in the suture anchor group was also significantly lower than in the transosseous suture group (SA: 422.4 ± 212.2 N, TS: 825.7 ± 189.3 N, P = 0.04). CONCLUSIONS: Suture anchors may be a viable alternative to transosseous suture in younger patients for clinical advantages, but in osteoporotic bone, the more stable osteosynthesis with transosseous suture continues to prove superior. Therefore, trauma surgeons might consider the use of transosseous suture in elderly patients, especially in those presenting with low bone mineral density values.


Assuntos
Fraturas Ósseas , Osteoporose , Idoso , Humanos , Patela/cirurgia , Âncoras de Sutura , Fraturas Ósseas/cirurgia , Suturas , Osteoporose/cirurgia
5.
Med Eng Phys ; 107: 103854, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36068039

RESUMO

We present a systematic and automated stepwise method to calibrate computational models of the spine. For that purpose, a sequential resection study on one lumbar specimen (L2-L5) was performed to obtain the individual contribution of the IVD, the facet joints and the ligaments to the kinematics of the spine. The experimental data was prepared for the calibration procedure in such manner that the FE model could reproduce the average motion of the 10 native spines from former cadaveric studies as well as replicate the proportional change in ROM after removal of a spinal structure obtained in this resection study. A Genetic Algorithm was developed to calibrate the properties of the intervertebral discs and facet joints. The calibration of each ligament was performed by a simple and novel technique that requires only one simulation to obtain its mechanical property. After calibration, the model was capable of reproducing the experimental results in all loading directions and resections.


Assuntos
Disco Intervertebral , Vértebras Lombares , Fenômenos Biomecânicos , Calibragem , Análise de Elementos Finitos , Humanos , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular
6.
J Clin Med ; 11(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35743379

RESUMO

Mandible defects are conventionally reconstructed using titanium plates. However, titanium causes metallic artifacts which impair radiological imaging. This study aims at evaluating mechanical fatigue of radiolucent fiber-reinforced polyetheretherketone (f-PEEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and polyphenylsulfone (PPSU) polymer plates for mandible reconstruction. A total of 30 plates (titanium [n = 6], f-PEEK [n = 6], PEEK [n = 6], PEKK [n = 6], PPSU [n = 6]) were implanted in synthetic mandibulectomized polyurethane mandibles. Servo-pneumatic mechanical testing with cyclic application of 30−300 N at 3 Hz was conducted. Bite forces were 70% on the unresected and 30% on the resected side. Total number of cycles was set to 250,000. Testing was aborted in case of plate or screw failure. Axial load to failure was tested with a speed of 1 mm/s. Kruskal−Wallis and Dunn's post hoc tests were used. Titanium, f-PEEK, and PEEK showed no failure in fatigue testing and PPSU (p < 0.001) failed against titanium, f-PEEK, PEEK, and PEKK. Titanium allowed the highest load to failure compared to f-PEEK (p = 0.049), PEEK (p = 0.008), PEKK (p < 0.001), and PPSU (p = 0.007). f-PEEK, PEEK, and PEKK withstood expected physiological bite force. Although titanium plates provided the highest fatigue strength, f-PEEK and PEEK plates showed no failure over 250,000 chewing cycles indicating sufficient mechanical strength for mandible reconstruction.

7.
Eur Spine J ; 31(4): 1013-1021, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34716821

RESUMO

PURPOSE: There is a paucity of studies on new vertebral body tethering (VBT) surgical constructs especially regarding their potentially motion-preserving ability. This study analyses their effects on the ROM of the spine. METHODS: Human spines (T10-L3) were tested under pure moment in four different conditions: (1) native, (2) instrumented with one tether continuously connected in all vertebrae from T10 to L3, (3) additional instrumented with a second tether continuously connected in all vertebrae from T11 to L3, and (4) instrumented with one tether and one titanium rod (hybrid) attached to T12, L1 and L2. The instrumentation was inserted in the left lateral side. The intersegmental ROM was evaluated using a magnetic tracking system, and the medians were analysed. Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct. The mentioned information is correct RESULTS: Compared to the native spine, the instrumented spine presented a reduction of less than 13% in global ROM considering flexion-extension and axial rotation. For left lateral bending, the median global ROM of the native spine (100%) significantly reduced to 74.6%, 66.4%, and 68.1% after testing one tether, two tethers and the hybrid construction, respectively. In these cases, the L1-L2 ROM was reduced to 68.3%, 58.5%, and 38.3%, respectively. In right lateral bending, the normalized global ROM of the spine with one tether, two tethers and the hybrid construction was 58.9%, 54.0%, and 56.6%, respectively. Considering the same order, the normalized L1-L2 ROM was 64.3%, 49.9%, and 35.3%, respectively. CONCLUSION: The investigated VBT techniques preserved global ROM of the spine in flexion-extension and axial rotation while reduced the ROM in lateral bending.


Assuntos
Escoliose , Fenômenos Biomecânicos , Humanos , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular , Escoliose/cirurgia , Coluna Vertebral/cirurgia , Corpo Vertebral
8.
J Biomech Eng ; 144(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802059

RESUMO

Lumbar lordotic correction (LLC), the gold standard treatment for sagittal spinal malalignment (SMA), and its effect on sagittal balance have been critically discussed in recent studies. This paper assesses the biomechanical response of the spinal components to LLC as an additional factor for the evaluation of LLC. Human lumbar spines (L2L5) were loaded with combined bending moments in flexion (Flex)/extension (Ex) or lateral bending (LatBend) and axial rotation (AxRot) in a physiological environment. We examined the dependency of AxRot range of motion (RoM) on the applied bending moment. The results were used to validate a finite element (FE) model of the lumbar spine. With this model, the biomechanical response of the intervertebral discs (IVD) and facet joints under daily motion was studied for different sagittal alignment postures, simulated by a motion in Flex/Ex direction. Applied bending moments decreased AxRot RoM significantly (all P < 0.001). A stronger decline of AxRot RoM for Ex than for Flex direction was observed (all P < 0.0001). Our simulated results largely agreed with the experimental data (all R2 > 0.79). During the daily motion, the IVD was loaded higher with increasing lumbar lordosis (LL) for all evaluated values at L2L3 and L3L4 and posterior annulus stress (AS) at L4L5 (all P < 0.0476). The results of this study indicate that LLC with large extensions of LL may not always be advantageous regarding the biomechanical loading of the IVD. This finding may be used to improve the planning process of LLC treatments.


Assuntos
Vértebras Lombares , Articulação Zigapofisária , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Vértebras Lombares/fisiologia , Postura , Amplitude de Movimento Articular/fisiologia , Articulação Zigapofisária/fisiologia
9.
Life (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34833065

RESUMO

Tibial shaft fractures are common injuries in the pediatric and adolescent populations. Elastic stable intramedullary nailing (ESIN) is the treatment of choice for cases that require surgical stabilization. A new intramedullary device, BoneHelix® (BH), may be an alternative for use with fractures that cannot be satisfactorily stabilized with ESIN. This study aimed to assess the biomechanical performance of BH compared with ESIN in a porcine tibia fracture model, observing cyclic fatigue and load to failure. Computed tomography was used to monitor the implant position and to rule out unintended damage. No implant or bone failure occurred during the fatigue testing. An increase in the cumulative plastic displacement was observed in both test groups over the loading cycles applied. Both implant-bone constructs displayed a trend toward closure of the osteotomy gap. During the load-to-failure test, the average loads at failure in specimens instrumented with ESIN and BH were 5364 N (±723) and 4350 N (±893), respectively, which were not statistically significant (p = 0.11). The values of both groups were two to three times higher than the estimated maximal load (2000 N) during physiological weight bearing. The biomechanical results thus indicate equivalent performance and stability by the implants tested.

10.
J Biomech Eng ; 142(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314885

RESUMO

Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion-extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion-extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion-extension loading.


Assuntos
Uretana , Fenômenos Biomecânicos , Cimento de Policarboxilato
11.
Clin Biomech (Bristol, Avon) ; 61: 112-119, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30551087

RESUMO

BACKGROUND: Posterior dynamic stabilization systems are developed to maintain the healthy biomechanics of the spine while providing stabilization. Numerous dynamic systems incorporate polycarbonate urethane with temperature- and moisture-dependent material properties. In the underlying study, a novel test rig is used to evaluate the biomechanical performance of a system containing polycarbonate urethane. METHODS: The test rig is composed of two hydraulic actuators. An environmental chamber, filled with water vapor at body temperature, is included in the set up. The translational and rotational degrees of freedom of vertebrae and pedicle screws are measured using a magnetic tracking system. The Transition® device is tested in five lumbar spines (L2-L5) of human cadavers. Pure moment tests are performed for flexion-extension, lateral bending, and axial rotation. Three test conditions are compared: 1. native specimens, 2. dynamic instrumentation at L4-L5, 3. dynamic instrumentation with decompression at L4-L5. FINDINGS: The ranges of motion, the centers of rotation, and the pedicle screw loosening are calculated and evaluated. During daily motions such as walking, the loads on the lumbar spine differ from the standardized test protocols. To allow a reproducible data evaluation for smaller deformations, all moment-rotation curves are parameterized using sigmoid functions. INTERPRETATION: In flexion-extension, the Transition® device provides the highest stiffening of the segment and the largest shift of the center of rotation. No shift in the center of rotation, and the smallest supporting effect on the segment is observed for axial rotation. In lateral bending, a mediate reduction of the range of motion is observed.


Assuntos
Equipamentos Ortopédicos , Cimento de Policarboxilato/química , Amplitude de Movimento Articular , Uretana/química , Idoso , Fenômenos Biomecânicos , Cadáver , Descompressão Cirúrgica/instrumentação , Desenho de Equipamento , Feminino , Humanos , Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Masculino , Pessoa de Meia-Idade , Parafusos Pediculares , Rotação , Fusão Vertebral/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...