Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(1): 248-256, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36408786

RESUMO

A model mixed-conducting polymer, blended with an amphiphilic block-copolymer, is shown to yield systems with drastically enhanced electro-chemical doping kinetics, leading to faster electrochemical transistors with a high transduction. Importantly, this approach is robust and reproducible, and should be readily adaptable to other mixed conductors without the need for exhaustive chemical modification.

2.
ACS Appl Mater Interfaces ; 14(25): 29052-29060, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35696277

RESUMO

Organic mixed ionic electronic conductors (OMIECs) have the potential to enable diverse new technologies, ranging from biosensors to flexible energy storage devices and neuromorphic computing platforms. However, a study of these materials in their operating state, which convolves both passive and potential-driven solvent, cation, and anion ingress, is extremely difficult, inhibiting rational material design. In this report, we present a novel approach to the in situ studies of the electrochemical switching of a prototypical OMIEC based on oligoethylene glycol (oEG) substitution of semicrystalline regioregular polythiophene via grazing-incidence X-ray scattering. By studying the crystal lattice both dry and in contact with the electrolyte while maintaining potential control, we can directly observe the evolution of the crystalline domains and their relationship to film performance in an electrochemically gated transistor. Despite the oEG side-chain enabling bulk electrolyte uptake, we find that the crystalline regions are relatively hydrophobic, exhibiting little (less than one water per thiophene) swelling of the undoped polymer, suggesting that the amorphous regions dominate the reported passive swelling behavior. With applied potential, we observe that the π-π separation in the crystals contracts while the lamella spacing increases in a balanced fashion, resulting in a negligible change in the crystal volume. The potential-induced changes in the crystal structure do not clearly correlate to the electrical performance of the film as an organic electrochemical transistor, suggesting that the transistor performance is strongly influenced by the amorphous regions of the film.

3.
J Phys Chem Lett ; 12(42): 10422-10428, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34672581

RESUMO

In situ UV-vis-NIR spectroelectrochemistry has been intensively used to evaluate the electronic transitions during the charging/discharging process of π-conjugated polymers. However, the type of charge carrier and the mechanisms of their transport, remains still a point of discussion. Herein, the coupling between UV-vis-NIR spectroscopy and in situ electrochemical-conductance measurements is proposed to compare the doping process of three different thiophene-based conducting polymers. The simultaneous monitoring of electrical and absorption properties, associated with low energy electronic transitions characteristic for polarons and bipolarons, was achieved. In addition, this method allows evaluating the reversible charge trapping mechanism of poly-3,4-o-xylendioxythiophene (PXDOT), caused by the formation of σ-dimers, making it a very useful tool to determine relevant physicochemical properties of conductive materials.

4.
Adv Mater ; 33(2): e2005723, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33251656

RESUMO

Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer-based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de-doping and charging/discharging. Although ion dynamics may be enhanced in expanded networks, these volumetric changes can have undesirable consequences, e.g., negatively affecting hole/electron conduction and severely shortening device lifetime. Here, the authors present a new material poly[3-(6-hydroxy)hexylthiophene] (P3HHT) that is able to transport ions and electrons/holes, as tested in electrochemical absorption spectroscopy and organic electrochemical transistors, and that exhibits low swelling, attributed to the hydroxylated alkyl side-chain functionalization. P3HHT displays a thickness change upon passive swelling of only +2.5%, compared to +90% observed for the ubiquitous poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, and +10 to +15% for polymers such as poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5-yl)thieno[3,2-b]thiophene) (p[g2T-TT]). Applying a bias pulse during swelling, this discrepancy becomes even more pronounced, with the thickness of P3HHT films changing by <10% while that of p(g2T-TT) structures increases by +75 to +80%. Importantly, the initial P3HHT film thickness is essentially restored after de-doping while p(g2T-TT) remains substantially swollen. The authors, thus, expand the materials-design toolbox for the creation of low-swelling soft mixed conductors with tailored properties and applications in bioelectronics and beyond.

5.
Phys Chem Chem Phys ; 20(46): 28984-28989, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30457608

RESUMO

Polymorphism and related solid-state phase transitions affect the structure and morphology and hence the properties of materials, but they are not-so-well understood. Atomistic computational methods can provide molecular-level insights, but they have rarely proven successful for transitions between polymorphic forms of crystalline polymers. In this work, we report atomistic molecular dynamics (MD) simulations of poly(3-alkylthiophenes) (P3ATs), widely used organic semiconductors to explore the experimentally observed, entropy-driven transition from form II to more common form I type polymorphs, or, more precisely, to form I mesophases. The transition is followed continuously, also considering X-ray diffraction evidence, for poly(3-hexylthiophene) (P3HT) and poly(3-butylthiophene) (P3BT), evidencing three main steps: (i) loss of side chain interdigitation, (ii) partial disruption of the original stacking order and (iii) reorganization of polymer chains into new, tighter, main-chain stacks and new layers with characteristic form I periodicities, substantially larger than those in the original form II. The described approach, likely applicable to other important transitions in polymers, provides previously inaccessible insight into the structural organization and disorder features of form I structures of P3ATs, not only in their development from form II structures but also from melts or solutions.

6.
J Phys Chem Lett ; 5(13): 2171-6, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26279529

RESUMO

Two crystal polymorphs of a thiophene-phenylene hexamer with bulky terminal substituents are characterized by different molecular conformations and parallel versus herringbone packing. Irrespective of their similar emissive spectra and common H-aggregate features, evidenced by crystal structure analysis and confirmed by solid-phase and excited-state first-principles calculations, their luminescence is relatively high and, for one form, nearly double than that for the other. Interaromatic packing energy contributions are established by quantum chemical calculations and can be compared quantitatively as the same species in different crystal environments is examined. The different luminescence efficiency of the two phases highlights the crucial role of the interaromatic packing for the luminescence properties of polyaromatic oligomers.

7.
Chem Commun (Camb) ; 49(40): 4525-7, 2013 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23575977

RESUMO

The first solvent-free crystal structure of PCBM, an organic semiconductor widely used in solvent-free nanocrystalline films in plastic solar cells, is reported and its relevance to structure-property relationships discussed. The PCBM structure, obtained from o-dichlorobenzene solvates by solvent abstraction, was solved using powder diffraction, demonstrating this possibility for functionalized fullerenes.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Energia Solar , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...