Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Oncol ; 32(2): 269-278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130216

RESUMO

BACKGROUND: KRAS is mutated in ∼90% of pancreatic ductal adenocarcinomas, ∼35% of colorectal cancers and ∼20% of non-small-cell lung cancers. There has been recent progress in targeting G12CKRAS specifically, but therapeutic options for other mutant forms of KRAS are limited, largely because the complexity of downstream signaling and feedback mechanisms mean that targeting individual pathway components is ineffective. DESIGN: The protein kinases RAF and SRC are validated therapeutic targets in KRAS-mutant pancreatic ductal adenocarcinomas, colorectal cancers and non-small-cell lung cancers and we show that both must be inhibited to block growth of these cancers. We describe CCT3833, a new drug that inhibits both RAF and SRC, which may be effective in KRAS-mutant cancers. RESULTS: We show that CCT3833 inhibits RAF and SRC in KRAS-mutant tumors in vitro and in vivo, and that it inhibits tumor growth at well-tolerated doses in mice. CCT3833 has been evaluated in a phase I clinical trial (NCT02437227) and we report here that it significantly prolongs progression-free survival of a patient with a G12VKRAS spindle cell sarcoma who did not respond to a multikinase inhibitor and therefore had limited treatment options. CONCLUSIONS: New drug CCT3833 elicits significant preclinical therapeutic efficacy in KRAS-mutant colorectal, lung and pancreatic tumor xenografts, demonstrating a treatment option for several areas of unmet clinical need. Based on these preclinical data and the phase I clinical unconfirmed response in a patient with KRAS-mutant spindle cell sarcoma, CCT3833 requires further evaluation in patients with other KRAS-mutant cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinases da Família src/genética
2.
J Med Chem ; 47(10): 2651-8, 2004 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15115406

RESUMO

Nine new nitrogen mustard compounds derived from 2,6-difluoro-4-hydroxy- (3a-e) and 2,6-difluoro-4-amino- (4a-d) aniline were synthesized as potential prodrugs. They were designed to be activated to their corresponding 3,5-difluorophenol and -aniline (4)-nitrogen mustards by the enzyme carboxypeptidase G2 (CPG2) in gene-directed enzyme prodrug therapy (GDEPT) models. The compounds were tested for cytotoxicity in the MDA MB-361 breast adenocarcinoma. The cell line was engineered to express stably either CPG2 tethered to the cell surface stCPG2-(Q)3 or beta-galactosidase (beta-Gal) as control. The cytotoxicity differentials were calculated between CPG 2-expressing and -nonexpressing cells and yielded different results for the two series of prodrugs despite their structural similarities. While the phenol compounds are ineffective as prodrugs, their aniline counterparts exhibit outstanding activity in the tumor cell lines expressing CPG2. [3,5-Difluoro-4-[bis(2-chloroethyl)amino]phenyl]carbamoyl-l-glutamic acid gave a differential of >227 in MDA MB361 cells as compared with 19 exhibited by 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-l-glutamic acid, 1a, which has been in clinical trials.


Assuntos
Antineoplásicos/metabolismo , Ácido Glutâmico/metabolismo , Compostos de Mostarda Nitrogenada/metabolismo , Pró-Fármacos/metabolismo , gama-Glutamil Hidrolase/metabolismo , Mostarda de Anilina/análogos & derivados , Mostarda de Anilina/síntese química , Mostarda de Anilina/metabolismo , Mostarda de Anilina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Derivados de Benzeno/síntese química , Derivados de Benzeno/metabolismo , Derivados de Benzeno/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Terapia Genética , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/síntese química , Ácido Glutâmico/farmacologia , Meia-Vida , Humanos , Camundongos , Transplante de Neoplasias , Compostos de Mostarda Nitrogenada/síntese química , Compostos de Mostarda Nitrogenada/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade , Transplante Heterólogo , gama-Glutamil Hidrolase/química , gama-Glutamil Hidrolase/genética
3.
J Med Chem ; 42(13): 2485-9, 1999 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10395490

RESUMO

Four novel potential prodrugs derived from daunorubicin (8, 10) and doxorubicin (12, 14) were designed and synthesized. They are self-immolative prodrugs for suicide gene therapy activation by the enzyme carboxypeptidase G2 (CPG2) subsequently releasing the corresponding anthracyclines, by a 1,6-elimination mechanism. A mammary carcinoma cell line (MDA MB 361) was engineered to express CPG2 intracellularly (CPG2) or extracellularly, tethered to the outer cell membrane (stCPG2(Q)3). The prodrugs derived from doxorubicin showed prodrug/drug cytotoxicity differentials of 21-fold (compound 12) and 23-fold (compound 14). Prodrug 12 underwent an 11-fold activation when assayed in the cell line expressing externally surface-tethered CPG2.


Assuntos
Antineoplásicos/síntese química , Daunorrubicina/química , Doxorrubicina/química , Pró-Fármacos/síntese química , Antineoplásicos/farmacologia , Membrana Celular/enzimologia , Daunorrubicina/metabolismo , Doxorrubicina/metabolismo , Terapia Genética , Humanos , Pró-Fármacos/farmacologia , Células Tumorais Cultivadas , gama-Glutamil Hidrolase/química , gama-Glutamil Hidrolase/metabolismo
4.
Anticancer Drug Des ; 14(6): 517-38, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10834273

RESUMO

Antibody- and gene-directed enzyme prodrug therapy are two-step targeting strategies designed to improve the selectivity of antitumour agents. The approaches are based on the activation of specially designed prodrugs by antibody-enzyme conjugates targeted to tumour-associated antigens (ADEPT) or by enzymes expressed by exogenous genes in tumour cells (GDEPT). Herein the design, synthesis, physico-chemical and biological properties, kinetics and clinical trials of the prodrugs and the enzymes carboxypeptidase G2 and nitroreductase are reviewed for ADEPT and GDEPT.


Assuntos
Terapia Genética/métodos , Imunoterapia/métodos , Neoplasias/terapia , Pró-Fármacos , Animais , Anticorpos Antineoplásicos/imunologia , Desenho de Fármacos , Humanos
5.
J Med Chem ; 41(26): 5297-309, 1998 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-9857097

RESUMO

Four new potential self-immolative prodrugs derived from phenol and aniline nitrogen mustards, four model compounds derived from their corresponding fluoroethyl analogues and two new self-immolative linkers were designed and synthesized for use in the suicide gene therapy termed GDEPT (gene-directed enzyme prodrug therapy). The self-immolative prodrugs were designed to be activated by the enzyme carboxypeptidase G2 (CPG2) releasing an active drug by a 1, 6-elimination mechanism via an unstable intermediate. Thus, N-[(4-¿[4-(bis¿2-chloroethyl¿amino)phenoxycarbonyloxy]methyl¿pheny l)c arbamoyl]-L-glutamic acid (23), N-[(4-¿[4-(bis¿2-chloroethyl¿amino)phenoxycarbonyloxy]methyl¿pheno xy) carbonyl]-L-glutamic acid (30), N-[(4-¿[N-(4-¿bis[2-chloroethyl]amino¿phenyl)carbamoyloxy]methyl¿+ ++phen oxy)carbonyl]-L-glutamic acid (37), and N-[(4-¿[N-(4-¿bis[2-chloroethyl]amino¿phenyl)carbamoyloxy]methyl¿+ ++phen yl)carbamoyl]-L-glutamic acid (40) were synthesized. They are bifunctional alkylating agents in which the activating effects of the phenolic hydroxyl or amino functions are masked through an oxycarbonyl or a carbamoyl bond to a benzylic spacer which is itself linked to a glutamic acid by an oxycarbonyl or a carbamoyl bond. The corresponding fluoroethyl compounds 25, 32, 42, and 44 were also synthesized. The rationale was to obtain model compounds with greatly reduced alkylating abilities that would be much less reactive with nucleophiles compared to the corresponding chloroethyl derivatives. This enabled studies of these model compounds as substrates for CPG2, without incurring the rapid and complicated decomposition pathways of the chloroethyl derivatives. The prodrugs were designed to be activated to their corresponding phenol and aniline nitrogen mustard drugs by CPG2 for use in GDEPT. The synthesis of the analogous novel parent drugs (21b, 51) is also described. A colorectal cell line was engineered to express CPG2 tethered to the outer cell surface. The phenylenediamine compounds were found to behave as prodrugs, yielding IC50 prodrug/IC50 drug ratios between 20- and 33-fold (for 37 and 40) and differentials of 12-14-fold between CPG2-expressing and control LacZ-expressing clones. The drugs released are up to 70-fold more potent than 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoic acid that results from the prodrug 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid (CMDA) which has been used previously for GDEPT. These data demonstrate the viability of this strategy and indicate that self-immolative prodrugs can be synthesized to release potent mustard drugs selectively by cells expressing CPG2 tethered to the cell surface in GDEPT.


Assuntos
Antineoplásicos Alquilantes/síntese química , Terapia Genética , Mecloretamina/análogos & derivados , Mecloretamina/síntese química , Pró-Fármacos/síntese química , Animais , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos Alquilantes/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Concentração Inibidora 50 , Mecloretamina/metabolismo , Mecloretamina/farmacologia , Camundongos , Mutação , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Transfecção , Células Tumorais Cultivadas , gama-Glutamil Hidrolase/biossíntese , gama-Glutamil Hidrolase/genética , gama-Glutamil Hidrolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...