Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(6): 777-787, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312859

RESUMO

The DNA methyltransferase 2 (DNMT2) is an RNA modifying enzyme associated with pathophysiological processes, such as mental and metabolic disorders or cancer. Although the development of methyltransferase inhibitors remains challenging, DNMT2 is not only a promising target for drug discovery, but also for the development of activity-based probes. Here, we present covalent SAH-based DNMT2 inhibitors decorated with a new type of aryl warhead. Based on a noncovalent DNMT2 inhibitor with N-benzyl substituent, the Topliss scheme was followed for optimization. The results showed that electron-deficient benzyl moieties highly increased affinity. By decorating the structures with strong electron-withdrawing moieties and leaving groups, we adjusted the electrophilicity to create covalent DNMT2 inhibitors. A 4-bromo-3-nitrophenylsulfonamide-decorated SAH derivative (80) turned out to be the most potent (IC50 = 1.2 ± 0.1 µM) and selective inhibitor. Protein mass spectrometry confirmed the covalent reaction with the catalytically active cysteine-79.

2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047081

RESUMO

Targeting RNA methyltransferases with small molecules as inhibitors or tool compounds is an emerging field of interest in epitranscriptomics and medicinal chemistry. For two challenging RNA methyltransferases that introduce the 5-methylcytosine (m5C) modification in different tRNAs, namely DNMT2 and NSUN6, an ultra-large commercially available chemical space was virtually screened by physicochemical property filtering, molecular docking, and clustering to identify new ligands for those enzymes. Novel chemotypes binding to DNMT2 and NSUN6 with affinities down to KD,app = 37 µM and KD,app = 12 µM, respectively, were identified using a microscale thermophoresis (MST) binding assay. These compounds represent the first molecules with a distinct structure from the cofactor SAM and have the potential to be developed into activity-based probes for these enzymes. Additionally, the challenges and strategies of chemical space docking screens with special emphasis on library focusing and diversification are discussed.


Assuntos
Metiltransferases , RNA , Simulação de Acoplamento Molecular , RNA de Transferência/química , DNA (Citosina-5-)-Metiltransferases , tRNA Metiltransferases
3.
ACS Pharmacol Transl Sci ; 5(11): 1079-1085, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407957

RESUMO

Developing methyltransferase inhibitors is challenging, since most of the currently used assays are time-consuming and cost-intensive. Therefore, efficient, fast, and reliable methods for screenings and affinity determinations are of utmost importance. Starting from a literature-known fluorescent S-adenosylhomocysteine derivative, 5-FAM-triazolyl-adenosyl-Dab, developed for a fluorescence polarization assay to investigate the histone methyltransferase mixed-lineage leukemia 1, we herein describe the applicability of this compound as a fluorescent tracer for the investigation of DNA-methyltransferase 2 (DNMT2), a human RNA methyltransferase. Based on these findings, we established a microscale thermophoresis (MST) assay for DNMT2. This displacement assay can circumvent various problems inherent to this method. Furthermore, we optimized a screening method via MST which even indicates if the detected binding is competitive and gives the opportunity to estimate the potency of a ligand, both of which are not possible with a direct binding assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...