Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687417

RESUMO

The MADS-box gene family plays key roles in flower induction, floral initiation, and floral morphogenesis in flowering plants. To understand their functions in the double-flower formation of Prunus campanulata 'Plena' (hereafter referred to as PCP), which is an excellent flowering cherry cultivar, we performed genome-wide identification of the MADS-box gene family. In this study, 71 MADS-box genes were identified and grouped into the Mα, Mß, Mγ and MIKC subfamilies according to their structures and phylogenetic relationships. All 71 MADS-box genes were located on eight chromosomes of PCP. Analysis of the cis-acting elements in the promoter region of MADS-box genes indicated that they were associated mainly with auxin, abscisic acid, gibberellin, MeJA (methyl jasmonate), and salicylic acid responsiveness, which may be involved in floral development and differentiation. By observing the floral organ phenotype, we found that the double-flower phenotype of PCP originated from petaloid stamens. The analysis of MIKC-type MADS-box genes in PCP vegetative and floral organs by qRT-PCR revealed six upregulated genes involved in petal development and three downregulated genes participating in stamen identity. Comparative analysis of petaloid stamens and normal stamens also indicated that the expression level of the AG gene (PcMADS40) was significantly reduced. Thus, we speculated that these upregulated and downregulated genes, especially PcMADS40, may lead to petaloid stamen formation and thus double flowers. This study lays a theoretical foundation for MADS-box gene identification and classification and studying the molecular mechanism underlying double flowers in other ornamental plants.

2.
Plant Cell Rep ; 42(6): 1071-1088, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37024635

RESUMO

KEY MESSAGE: TFL1-like genes of the basal eudicot Platanus acerifolia have conserved roles in maintaining vegetative growth and inhibiting flowering, but may act through distinct regulatory mechanism. Three TERMINAL FLOWER 1 (TFL1)-like genes were isolated and characterized from London plane tree (Platanus acerifolia). All genes have conserved genomic organization and characteristic of the phosphatidylethanolamine-binding protein (PEBP) family. Sequence alignment and phylogenetic analysis indicated that two genes belong to the TFL1 clade, designated as PlacTFL1a and PlacTFL1b, while another one was grouped in the BFT clade, named as PlacBFT. qRT-PCR analysis showed that all three genes primarily expressed in vegetative phase, but the expression of PlacTFL1a was much higher and wider than that of PlacTFL1b, with the latter only detected at relatively low expression levels in apical and lateral buds in April. PlacBFT was mainly expressed in young stems of adult trees followed by juvenile tissues. Ectopic expression of any TFL1-like gene in Arabidopsis showed phenotypes of delayed or repressed flowering. Furthermore, overexpression of PlacTFL1a gene in petunia also resulted in extremely delayed flowering. In non-flowering 35:PlacTFL1a transgenic petunia plants, the FT-like gene (PhFT) gene was significantly upregulated and AP1 homologues PFG, FBP26 and FBP29 were significantly down-regulated in leaves. Yeast two-hybrid analysis indicated that only weak interactions were detected between PlacTFL1a and PlacFDL, and PlacTFL1a showed no interaction with PhFDL1/2. These results indicated that the TFL1-like genes of Platanus have conserved roles in repressing flowering, but probably via a distinct regulatory mechanism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Flores , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
Plant J ; 114(3): 519-533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36786729

RESUMO

Flowering cherry is a very popular species around the world. High-quality genome resources for different elite cultivars are needed, and the understanding of their origins and the regulation of key ornamental traits are limited for this tree. Here, a high-quality chromosome-scale genome of Prunus campanulata 'Plena' (PCP), which is a native and elite flowering cherry cultivar in China, was generated. The contig N50 of the genome was 18.31 Mb, and 99.98% of its contigs were anchored to eight chromosomes. Furthermore, a total of 306 accessions of flowering cherry germplasm and six lines of outgroups were collected. Resequencing of these 312 lines was performed, and 761 267 high-quality genomic variants were obtained. The origins of flowering cherry were predicted, and these 306 accessions could be classified into three clades, A, B and C. According to phylogenetic analysis, we predicted two origins of flowering cherry. Flowering cherry in clade A originated in southern China, such as in the Himalayan Mountains, while clades B and C originated in northeastern China. Finally, a genome-wide association study of flower colour was performed for all 312 accessions of flowering cherry germplasm. A total of seven quantitative trait loci (QTLs) were identified. One gene encoding glycosylate transferase was predicted as the candidate gene for one QTL. Taken together, our results provide a valuable genomic resource and novel insights into the origin, evolution and flower colour variations of flowering cherry.


Assuntos
Estudo de Associação Genômica Ampla , Prunus avium , Filogenia , Cor , Prunus avium/genética , Flores/genética
4.
Commun Biol ; 5(1): 786, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927438

RESUMO

The Chinese tallow tree (Triadica sebifera) can produce oil with high content of unsaturated fatty acids in seeds and shows attractive leaf color in autumn and winter. Here, the 739 Mb chromosome-scale genome sequence of the Chinese tallow tree was assembled and it reveals the Chinese tallow tree is a tetraploid. Numerous genes related to nutrition assimilation, energy utilization, biosynthesis of secondary metabolites and resistance significantly expanded or are specific to the Chinese tallow tree. These genes would enable the Chinese tallow tree to obtain high adaptability. More genes in fatty acids biosynthesis in its genome, especially for unsaturated fatty acids biosynthesis, and higher expression of these genes in seeds would be attributed to its high content of unsaturated fatty acids. Cyanidin 3-O-glucoside was identified as the major component of anthocyanin in red leaves. All structural genes in anthocyanin biosynthesis show significantly higher expression in red leaves than in green leaves. Transcription factors, seven MYB and one bHLH, were predicted to regulate these anthocyanin biosynthesis genes. Collectively, we provided insight into the polyploidization, high adaptability and biosynthesis of the high content of unsaturated fatty acids in seeds and anthocyanin in leaves for the Chinese tallow tree.


Assuntos
Antocianinas , Proteínas de Plantas , Antocianinas/genética , Cromossomos , Euphorbiaceae , Ácidos Graxos , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...