Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6899, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899425

RESUMO

Wind-blown dust from southern South America links the terrestrial, marine, atmospheric, and biological components of Earth's climate system. The Pampas of central Argentina (~33°-39° S) contain a Miocene to Holocene aeolian record that spans an important interval of global cooling. Upper Miocene sediment provenance based on n = 3299 detrital-zircon U-Pb ages is consistent with the provenance of Pleistocene-Holocene deposits, indicating the Pampas are the site of a long-lived fluvial-aeolian system that has been operating since the late Miocene. Here, we show the establishment of aeolian sedimentation in the Pampas coincided with late Miocene cooling. These findings, combined with those from the Chinese Loess Plateau (~33°-39° N) underscore: (1) the role of fluvial transport in the development and maintenance of temporally persistent mid-latitude loess provinces; and (2) a global-climate forcing mechanism behind the establishment of large mid-latitude loess provinces during the late Miocene.

2.
Sci Bull (Beijing) ; 67(15): 1603-1610, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546288

RESUMO

The incision of the Sanmen Gorge marks the birth of the modern Yellow River, but its timing varies from the late Miocene-early Pliocene to the late Pleistocene (∼0.15 Ma), and the suggested forcing mechanisms vary from the uplift of the Tibetan Plateau to global climate change. Here, we report sedimentologic, geochronologic, and provenance data from a drill core near the Sanmen Gorge, the last gorge along the main course of the Yellow River. Our results indicate that typical river channel deposits, with detritus from the Ordos Block in the upstream regions, started to accumulate in the Sanmen Gorge at ∼1.25 Ma. When integrated with river terrace evidence from the upstream and downstream regions, the results provide robust evidence that the final integration of the modern Yellow River occurred at ∼1.25 Ma, consistent with the beginning of the Mid-Pleistocene transition (MPT). We propose that the accelerated lowering of eustatic sea level during the MPT may play as important a role as tectonism in driving the birth and evolution of the modern Yellow River.


Assuntos
Mudança Climática , Rios
3.
Sci Adv ; 8(41): eabq2007, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223463

RESUMO

The formation and evolution of the landscape of the Chinese Loess Plateau (CLP) is debated because of uncertainties regarding dust provenance. We present a quantitative estimation of dust source contributions to the CLP, based on more than 37,100 detrital zircon U-Pb ages, combined with mineral assemblages and isotope analyses. Our results reveal that the CLP was stepwise formed by ~8 million years (Ma) and is mainly composed of material from the Northeastern Qinghai-Tibetan Plateau, with stepwise shifts in relative contributions of different eolian silt sources occurring at ~2.6 Ma and 1.5 to 1.2 Ma. We infer that these changes were driven by stepwise global cooling, which induced aridification and enhanced silt production in glaciated-cold climate dust source regions, as well as dust ablation in the expanded arid regions. We propose that global cooling, rather than regional tectonic deformation, was the main driver of the formation and evolution of the CLP during late Cenozoic.

4.
Nat Commun ; 13(1): 3977, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803935

RESUMO

Periodic wetting is an inherent feature of many monsoon marginal region deserts. Previous studies consistently demonstrate desert wetting during times of Earth's high orbital eccentricity and strong summer monsoon. Here we report the first evidence demonstrating desert wetting during Earth's low orbital eccentricity from the late Miocene strata of the northwestern Tarim Basin of northern China, which is commonly thought to be beyond the range of Asian monsoon precipitation. Using mechanisms for modern Tarim wetting as analogs, we propose that East Asian summer monsoon weakening enhanced westward moisture transport and caused opposite desert wetting pattern to that observed in monsoon marginal region deserts. This inference is supported by our model simulations. This result has far-reaching implications for understanding environmental variations in non-monsoonal deserts in the next few thousands of years under high atmospheric CO2 content and low eccentricity.


Assuntos
Estações do Ano , China
5.
Nat Commun ; 13(1): 1329, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288572

RESUMO

Estimates of the permafrost-climate feedback vary in magnitude and sign, partly because permafrost carbon stability in warmer-than-present conditions is not well constrained. Here we use a Plio-Pleistocene lacustrine reconstruction of mean annual air temperature (MAAT) from the Tibetan Plateau, the largest alpine permafrost region on the Earth, to constrain past and future changes in permafrost carbon storage. Clumped isotope-temperatures (Δ47-T) indicate warmer MAAT (~1.2 °C) prior to 2.7 Ma, and support a permafrost-free environment on the northern Tibetan Plateau in a warmer-than-present climate. Δ47-T indicate ~8.1 °C cooling from 2.7 Ma, coincident with Northern Hemisphere glacial intensification. Combined with climate models and global permafrost distribution, these results indicate, under conditions similar to mid-Pliocene Warm period (3.3-3.0 Ma), ~60% of alpine permafrost containing ~85 petagrams of carbon may be vulnerable to thawing compared to ~20% of circumarctic permafrost. This estimate highlights ~25% of permafrost carbon and the permafrost-climate feedback could originate in alpine areas.


Assuntos
Pergelissolo , Carbono/análise , Clima , Região dos Alpes Europeus , Temperatura
6.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34670836

RESUMO

The East Asian summer monsoon and the precipitation it brings are relevant for millions of people. Because of the monsoon's importance, there has been a substantial amount of work attempting to describe the driving mechanisms behind its past variability. However, discrepancies exist, with speleothem-based East Asian monsoon reconstructions differing from those based on loess records from the Chinese Loess Plateau during the late Quaternary. The periodicity of wet and dry phases experienced by desert areas that lie on the periphery of the East Asian monsoon's influence offer another independent view of monsoonal variability. Here, we provide environmental records based on magnetic parameters for the last 3 million years from the Tengger Desert, China, one such marginal arid region. Our results reveal wet-dry cycles at a dominant frequency of 405 kiloyears, with drier intervals corresponding to eccentricity minima. These findings are consistent with previous reconstructions of East Asian summer and North African summer monsoon precipitation variability. Our records emphasize the dominant role of eccentricity in forcing East Asian monsoonal precipitation as well as monsoonal-derived environmental fluctuations experienced in peripheral desert areas. These results challenge the traditional view that high-latitude ice sheets are the primary driver of East Asian monsoon precipitation during the Quaternary based on Chinese loess records.

8.
Sci Bull (Beijing) ; 66(22): 2320-2328, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654458

RESUMO

As a crucial part of the Asian monsoon stretching from tropical India to temperate East Asia, the Indian monsoon (IM) contributes predominant precipitation over Asian continent. However, our understanding of IM's onset, development and the underlying driving mechanisms is limited. Increasing evidence indicates that the IM began in the Eocene or even the Paleocene and was unexceptionally linked to the early rise of the Tibetan Plateau (TP). These were challenged by the heterogeneous and diachronous uplift of the TP and all the reported records were confined to tropical zone under tropical monsoon driven by the Intertropical Convergence Zone (ITCZ) that is irrelevant to the TP. Therefore, reliable paleoclimatic records from the extra-tropical IM region is crucial to reveal how the tropical IM expanded to subtropical and temperate zones and what driving factors might be related to it. Here we present robust Eocene paleoenvironmental records from central Yunnan (~26°N) in subtropical East Asia. The multiproxy results of two sites demonstrate a consistent sudden switch from a dry environment in the early Eocene to a seasonally wet one at 41 Ma, suggesting a jump of the tropical IM to the southern subtropical zone at 41 Ma. The full collision of India with Asia, and the resulting changes in paleogeography at 41 Ma (closure of the Neotethys sea, retreat of the Paratethys seas, fast northward movement of the southern margin of the TP and rise of the central TP), aided by synchronous Antarctic cooling, might have worked together to drive the IM enhancement and northward expansion.


Assuntos
Clima Extremo , Regiões Antárticas , Ásia , Ásia Oriental , China , Índia
9.
Sci Adv ; 6(50)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33298435

RESUMO

Knowledge of the topographic evolution of the Tibetan Plateau is essential for understanding its construction and its influences on climate, environment, and biodiversity. Previous elevations estimated from stable isotope records from the Lunpola Basin in central Tibet, which indicate a high plateau since at least 35 Ma, are challenged by recent discoveries of low-elevation tropical fossils apparently deposited at 25.5 Ma. Here, we use magnetostratigraphic and radiochronologic dating to revise the chronology of elevation estimates from the Lunpola Basin. The updated ages reconcile previous results and indicate that the elevations of central Tibet were generally low (<2.3 km) at 39.5 Ma and high (3.5 to 4.5 km) at ~26 Ma. This supports the existence in the Eocene of low-elevation longitudinally oriented narrow regions until their uplift in the early Miocene, with potential implications for the growth mechanisms of the Tibetan Plateau, Asian atmospheric circulation, surface processes, and biotic evolution.

10.
Nat Commun ; 11(1): 96, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900389

RESUMO

The accurate characterization of near-surface winds is critical to our understanding of past and modern climate. Dust lofted by these winds has the potential to modify surface and atmospheric conditions as well as ocean biogeochemistry. Stony deserts, low dust emitting regions today, represent expansive areas where variations in surficial geology through time may drastically impact near-surface conditions. Here we use the Weather Research and Forecasting (WRF) model over the western Gobi Desert to demonstrate a previously undocumented process between wind-driven landscape evolution and boundary layer conditions. Our results show that altered surficial thermal properties through winnowing of fine-grained sediments and formation of low-albedo gravel-mantled surfaces leads to an increase in near-surface winds by up to 25%; paradoxically, wind erosion results in faster winds regionally. This wind-albedo-wind feedback also leads to an increase in the frequency of hours spent at higher wind speeds, which has implications for dust emission potential.

11.
Sci Adv ; 4(2): eaao6977, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29487907

RESUMO

Theories of late Cenozoic climate cooling assume that central Asian aridification and high dust accumulation rates in the Chinese Loess Plateau and the North Pacific Ocean are genetically related. On the basis of detailed sediment provenance analysis, we show that high dust accumulation rates in the Chinese Loess Plateau and the North Pacific Ocean during the late Miocene-Pliocene were mainly caused by increased erosion in the Qilian Mountains and low-elevation eastern Asia areas, driven by the effects of East Asian summer monsoon intensification. We conclude that precipitation-driven erosion increased dust input to the North Pacific Ocean and may have played a pivotal role in late Cenozoic climate cooling.

12.
Sci Adv ; 3(3): e1600762, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435857

RESUMO

East Asian summer monsoon (EASM) precipitation received by northern China over the past 800 thousand years (ky) is characterized by dominant 100-ky periodicity, mainly attributed to CO2 and Northern Hemisphere insolation-driven ice sheet forcing. We established an EASM record in the Late Miocene from lacustrine sediments in the Qaidam Basin, northern China, which appears to exhibit a dominant 100-ky periodicity similar to the EASM records during the Late Quaternary. Because evidence suggests that partial or ephemeral ice existed in the Northern Hemisphere during the Late Miocene, we attribute the 100-ky cycles to CO2 and Southern Hemisphere insolation-driven Antarctic ice sheet forcing. This indicates a >6-million year earlier onset of the dominant 100-ky Asian monsoon and, likely, glacial and CO2 cycles and may indicate dominant forcing of Northern Hemisphere climate by CO2 and Southern Hemisphere ice sheets in a warm world.

13.
Sci Rep ; 6: 29642, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538343

RESUMO

Single grain zircon U-Pb geochronology has demonstrated great potentials in extracting tectonic and atmospheric circulation signal carried by aeolian, fluvial, and fluviolacustrine sediments. A routine in this sort of studies is analyzing 100-150 grains and then compares zircon U-Pb age spectra between the measured sample and the potential sources. Here we compared the zircon U-Pb age results of the late Miocene-Pliocene Red Clay sequence of two neighboring sites from the Chinese Loess Plateau where similar provenance signal is expected. Although the results from the 5.5 Ma sediment support this prediction, the results from the 3 Ma sediment at these two sites differ from each other significantly. These results emphasize the importance of increasing analysis number per sample and combining the zircon U-Pb geochronology with other provenance tools in order to get reliable provenance information.

14.
Sci Rep ; 6: 29515, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27389499

RESUMO

Magnetic paleoclimatic records often represent mixed environmental signals. Unmixing these signals may improve our understanding of the paleoenvironmental information contained within these records, but such a task is challenging. Here we report an example of numerical unmixing of magnetic hysteresis data obtained from Chinese loess and red clay sequences. We find that the mixed magnetic assemblages of the loess and red clay sediments both contain a component characterized by a narrow hysteresis loop, the abundance of which is positively correlated with magnetic susceptibility. This component has grain sizes close to the superparamagnetic/stable single domain boundary and is attributed to pedogenic activity. Furthermore, a wasp-waisted component is found in both the loess and red clay, however, the wasp-waisted form is more constricted in the red clay. We attribute this component to a mixture of detrital ferrimagnetic grains with pedogenic hematite. The abundance of this component decreases from the base to the top of the red clay, a pattern we attribute to decreased hematite production over the Chinese Loess Plateau (CLP) due to long-term climate cooling. This work demonstrates the potential of hysteresis loop unmixing to recover quantitative paleoclimatic information carried by both low and high coercivity magnetic minerals.

16.
Nat Commun ; 6: 8511, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449321

RESUMO

Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river's upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records.

17.
Sci Rep ; 4: 5474, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24969361

RESUMO

The monsoon is a fundamental component of Earth's climate. The Pliocene warm period is characterized by long-term global cooling yet concurrent monsoon dynamics are poorly known. Here we present the first fully quantified and calibrated reconstructions of separate Pliocene air temperature and East Asian summer monsoon precipitation histories on the Chinese Loess Plateau through joint analysis of loess/red clay magnetic parameters with different sensitivities to air temperature and precipitation. East Asian summer monsoon precipitation shows an intensified trend, paradoxically at the same time that climate cooled. We propose a hitherto unrecognized feedback where persistently intensified East Asian summer monsoon during the late Pliocene, triggered by the gradual closure of the Panama Seaway, reinforced late Pliocene Pacific freshening, sea-ice development and ice volume increase, culminating in initiation of the extensive Northern Hemisphere glaciations of the Quaternary Ice Age. This feedback mechanism represents a fundamental reinterpretation of the origin of the Quaternary glaciations and the impact of the monsoon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...