Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 249: 125975, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37494993

RESUMO

As one of the most abundant biopolymers, lignin is a widely available resource. However, its potential largely remains untapped, with most of it ending up as waste from industries like paper production, pulp processing, and bio-refining. The research undertaken in this study focused on the extraction of lignin from agroforestry waste using a deep eutectic solvent (DES) as a carrier for α-amylase immobilization, resulting in high stability and reusability. Several techniques, including Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and the Brunauer-Emmett-Teller (BET) method were employed to examine the structure and morphology of both the extracted lignin and the immobilized enzyme. The temperature used to recover lignin by DES would affect immobilization efficiency and enzyme loading by influencing its specific surface area, pore size, and volume distribution. Investigations using Nuclear Overhauser Effect Spectroscopy (NOESY) uncovered that the hydroxyl groups in G, H, and S units and the ß-O-4 structure of lignin primarily serve as binding sites for enzyme molecules. Immobilized α-amylase demonstrated a higher pH and thermal stability level, with an optimal pH of 7.0 and temperature of 100 °C, compared to the free enzyme, which exhibited optimal activity at a pH of 6.5 and temperature of 90 °C. Importantly, immobilized α-amylase retained >80 % of its initial activity even after 28 days at room temperature, and it maintained 70 % of its activity after being reused 12 times. These findings strongly suggest that lignin derived from agroforestry residues holds promising potential as a future versatile immobilization material, a prospect integral to society's sustainable development.


Assuntos
Nanopartículas , alfa-Amilases , Estabilidade Enzimática , alfa-Amilases/química , Lignina/química , Solventes Eutéticos Profundos , Água , Concentração de Íons de Hidrogênio , Enzimas Imobilizadas/química , Temperatura
2.
Colloids Surf B Biointerfaces ; 217: 112602, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660743

RESUMO

Enzyme immobilization techniques have developed dramatically over the past several decades. Support materials are key in shaping the function of a specific immobilized enzyme. Although they have large specific surface areas and functional active sites, single-component nanomaterials and their surface chemical modification derivatives struggle to meet increasing demand. Thus, composite materials, compounds of two or more materials, have been developed and applied in efficient immobilization through advances in materials science. More methods have been developed and employed to design composite nanomaterials in recent years. These novel composite nanomaterials often show superior physical, chemical, and biological performance as supports in enzyme immobilization, among other applications. In this review, immobilization techniques and their supports are stated first and methods to design and fabricate composite nanomaterials as nanosupports are also shown in the following section. Applications of composite nanosupports in laccase immobilization are discussed as models in the later sections of the paper. This review is intended to help readers gain insight into the design principles of composite nanomaterials for immobilization supports.


Assuntos
Enzimas Imobilizadas , Nanoestruturas , Enzimas Imobilizadas/química , Lacase/química , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...