Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835431

RESUMO

Mitochondrion is an important organelle of eukaryotic cells and a critical target of ionizing radiation (IR) outside the nucleus. The biological significance and mechanism of the non-target effect originating from mitochondria have received much attention in the field of radiation biology and protection. In this study, we investigated the effect, role, and radioprotective significance of cytosolic mitochondrial DNA (mtDNA) and its associated cGAS signaling on hematopoietic injury induced by IR in vitro culture cells and in vivo total body irradiated mice in this study. The results demonstrated that γ-ray exposure increases the release of mtDNA into the cytosol to activate cGAS signaling pathway, and the voltage-dependent anion channel (VDAC) may contribute to IR-induced mtDNA release. VDAC1 inhibitor DIDS and cGAS synthetase inhibitor can alleviate bone marrow injury and ameliorate hematopoietic suppression induced by IR via protecting hematopoietic stem cells and adjusting subtype distribution of bone marrow cells, such as attenuating the increase of the F4/80+ macrophage proportion in bone marrow cells. The present study provides a new mechanistic explanation for the radiation non-target effect and an alternative technical strategy for the prevention and treatment of hematopoietic acute radiation syndrome.


Assuntos
Citosol , DNA Mitocondrial , Hematopoese , Mitocôndrias , Nucleotidiltransferases , Lesões Experimentais por Radiação , Animais , Camundongos , Citosol/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Hematopoese/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo
2.
Cell Cycle ; 21(1): 74-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878966

RESUMO

This study explored the anti-tumor effect of ginkgetin, an extract from ginkgo biloba, on human hepatocellular carcinoma cell lines and the underlying mechanisms. Cell viability was measured by MTT assay. Apoptotic cell morphology was observed under an inverted microscope after Hoechst 33,258 staining, and the ratio of apoptotic and necrotic cells was examined by flow cytometry after FITC/PI staining. Cell cycle changes were analyzed using flow cytometry. Cytochrome c release and caspase 3 and 8 activities were monitored using the relevant reagent kits. The levels of cell cycle-related proteins were detected by Western blot. MTT results indicated that ginkgetin significantly reduced HepG2 cell viability in a dose-dependent manner. Cellular morphology observation revealed that ginkgetin induced typical apoptotic morphological features of HepG2 cells, such as increased apoptotic bodies and cell shrinkage. Cell cycle analysis showed that ginkgetin increased the proportion of cells in the S phase. S-phase cell accumulation could be attributed to the decreased expression of cell cycle regulatory factors. Similarly, ginkgetin also induced the apoptosis and S phase cell accumulation of another human HCC cell line SK-HEP-1. Furthermore, ginkgetin treatment increased caspase-3 activity and cytochrome c release but not caspase-8 activity, implying that ginkgetin might mediate cell apoptosis through the mitochondrial pathway. In addition, the tumor formation experiment in nude mice showed that ginkgetin administration inhibited tumor growth. These results suggest that ginkgetin could be a cell apoptosis stimulator by affecting the balance between cell proliferation and apoptosis, suggesting that ginkgetin might be suitable for human HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Biflavonoides , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Citocromos c , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus
3.
Dose Response ; 17(1): 1559325819833474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833875

RESUMO

BACKGROUND: Radiation therapy induces acute and chronic radiological toxicity, in particular hematological toxicity (HT). This study aimed to explore the mechanistic clue and potential predictors at the messenger RNA (mRNA) level. MATERIALS AND METHODS: Peripheral blood was collected from 3 patients with cervical cancer (CC), nasopharynx cancer (NC), and tongue cancer (TC) after the first 2 Gy fraction of radiotherapy (RT). High-throughput sequencing was used to assess mRNA profiles. RESULTS: Eleven genes, such as ALAS2(5-aminolevulinate synthase), SLC4A1(solute carrier family 4 member 1), HBG2(hemoglobin subunit gamma 2), TNFAIP3 (TNF α-induced protein 3), PER1 (period circadian clock 1), CCDC136 (coiled-coil domain containing 136), C9orf84 (chromosome 9 open reading frame 84), IL1B (interleukin 1ß), FOSB (FosB protooncogene), NR4A2 (nuclear receptor subfamily 4), PARP15 (polymerase family member 15), had overlapping expression changes in all 3 cancers of which 3 (ALAS2, FOSB, and HBG2) are suggested as potential predictors for the early diagnosis of HT after RT. CONCLUSIONS: ALAS2, FOSB, and HBG2 may be useful predictors of HT in patients after RT. Eleven overlapping expression mRNAs among 3 cancers might be potential predictors for early diagnosis of radiation toxicity in patients.

4.
Oncol Lett ; 15(3): 2781-2788, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29435004

RESUMO

Deregulation of microRNA (miR)-193b has been revealed to be associated with the proliferation of liver cells. However, the interaction between miR-193b and their targets inducing liver cancer remains largely unknown. The aim of the present study was to investigate the hypothesis that miR-193b affects the proliferation of liver cancer cells. In the present study, the overall survival of patients with liver cancer and low fold change of miR-193b was higher compared with that of patients with liver cancer patients and high fold change of miR-193b. The expression level of myeloid cell leukemia-1 (Mcl-1) in patients with liver cancer was lower compared with in the control group. The results of the present study demonstrated that downregulation of miR-193b suppressed the proliferation and induced apoptosis of liver cancer cells, and inhibited the Mcl-1 protein expression level in liver cancer cells. Upregulation of miR-193b increased cell proliferation and decreased apoptosis of liver cancer cells and promoted the expression level of Mcl-1 protein. The results of the present study demonstrated that the expression of miR-193b as a novel tumor suppressor serves an important role in the proliferation of liver cancer cells by mediating Mcl-1 expression.

5.
Oncol Rep ; 34(1): 368-74, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25997995

RESUMO

Mounting evidence suggests that microRNAs (miRNAs) play important roles in the development of cancer by targeting expression of tumor-related genes. In the present study, downregulation of miR-193b was observed in hepatocellular carcinoma (HCC) tissues and HCC cell lines by quantitative RT-PCR analyses, suggesting that miR-193b is a tumor-suppressor in HCC. More importantly, miR-193b significantly enhanced the cytotoxicity of cisplatin in HepG2 cells by targeting Mcl-1. Knockdown of the Mcl-1 gene by specific siRNA exhibited a function similar to miR-193b on sensitizing HepG2 cells to cisplatin-inducing cytotoxicity. Furthermore, the miR-193b-induced sensitization of HepG2 cells to cisplatin cytotoxicity was abolished by the transfection of Mcl-1 expression plasmid that lacked the 3'-untranslated region (3'-UTR). In addition, activation of caspase-3 was needed for sensitization by miR-193b to cisplatin-mediated cell death. Thus, the present study revealed the downregulation of miR-193b in HCC cells and illustrated a synergistic effect on cisplatin-induced apoptosis by targeting Mcl-1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Cisplatino/farmacologia , Neoplasias Hepáticas/genética , MicroRNAs/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Regiões 3' não Traduzidas , Apoptose , Carcinoma Hepatocelular/metabolismo , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...