Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(34): 20130-20137, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993187

RESUMO

This study examined the possibility of deep significance for the reduction of low-valence tungsten to inhibit disproportionation reactions in various molten alkali chlorides. Electrolysis and electrochemical tests of tungsten carbide were carried out in molten LiCl, LiCl-KCl, NaCl-KCl, NaCl-CsCl, and KCl-CsCl. One finding was that the reduction valence of tungsten ions decreased as the radius of the solvent alkali ion increased. This phenomenon may be viewed from the dissolution of tungsten carbide and the existence and deposition of tungsten ions. The mechanism of tungsten ion reduction and the stable configuration of tungsten ion groups were confirmed via a detailed study of the computational calculation. The increase in the radius of the solvent alkali ion was conducive to the dissolution of tungsten from tungsten carbide in the form of low valence state. Other results also indicated that W(II) ion groups first deposited on the cathode. They had the advantages of smaller coordination numbers and faster diffusion combined. Morphological and composition analysis results of the products are also presented.

2.
Nat Mater ; 21(6): 689-695, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484330

RESUMO

In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations. Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramolecular isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and density functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures.


Assuntos
Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Adsorção , Benzeno/química , Gases
3.
J Am Chem Soc ; 143(26): 9901-9911, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34167295

RESUMO

Constructing stable palladium(II)-based metal-organic frameworks (MOFs) would unlock more opportunities for MOF chemistry, particularly toward applications in catalysis. However, their availability is limited by synthetic challenges due to the inertness of the Pd-ligand coordination bond, as well as the strong tendency of the Pd(II) source to be reduced under typical solvothermal conditions. Under the guidance of reticular chemistry, herein, we present the first example of an azolate Pd-MOF, BUT-33(Pd), obtained via a deuterated solvent-assisted metal metathesis. BUT-33(Pd) retains the underlying sodalite network and mesoporosity of the template BUT-33(Ni) and shows excellent chemical stability (resistance to an 8 M NaOH aqueous solution). With rich Pd(II) sites in the atomically precise distribution, it also demonstrates good performances as a heterogeneous Pd(II) catalyst in a wide application scope, including Suzuki/Heck coupling reactions and photocatalytic CO2 reduction to CH4. This work highlights a feasible approach to reticularly construct noble metal based MOFs via metal metathesis, in which various merits, including high chemical stability, large pores, and tunable functions, have been integrated for addressing challenging tasks.

4.
Environ Sci Technol ; 49(21): 12662-9, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26458120

RESUMO

As the largest magnesium producer in the world, China is facing a great challenge of greenhouse gas (GHG) emissions reduction. In this paper, the variation trend and driving factors of GHG emissions from Chinese magnesium production were evaluated and the measures of technology and policy for effectively mitigating GHG emissions were provided. First, the energy-related and process-oriented GHG inventory is compiled for magnesium production in China. Then, the driving forces for the changes of the energy-related emission were analyzed by the method of Logarithmic Mean Divisia Index (LMDI) decomposition. Results demonstrated that Chinese magnesium output from 2003 to 2013 increased by 125%, whereas GHG emissions only increased by 16%. The emissions caused by the fuels consumption decline most significantly (from 28.4 to 6.6 t CO2eq/t Mg) among all the emission sources. The energy intensity and the energy structure were the main offsetting factors for the increase of GHG emissions, while the scale of production and the international market demand were the main contributors for the total increase. Considering the improvement of technology application and more stringent policy measures, the annual GHG emissions from Chinese primary magnesium production will be controlled within 22 million tons by 2020.


Assuntos
Dióxido de Carbono/análise , Indústria Química/métodos , Magnésio , Indústria Química/estatística & dados numéricos , China , Efeito Estufa
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3408-10, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24611412

RESUMO

Film thickness, component and content based on glass surface were determined by using XRF technic, measure condition and instrument work condition in every layer were set and adjusted for the best measure effect for every element. Background fundamental parameter (BG-FP) method was built up. Measure results with this method were consistent with the actual preparation course and the method could fit to production application.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(7): 1969-71, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-23016365

RESUMO

Elements and contents in three kinds of petal powders of white and red rose, carnation, and butterfly orchis were determined by using XRF technic, and the data for every group were compared and analysed. The results indicated that all powders contain no toxic elements determined but have lots of normal elements and trace elements, such as Fe, Cu, Zn, Mn, Ni, Si, Sr, and Rb. The same sort of powder had approximately equivalent elements but their contents are different, and the element content of the white sort. was higher than the red one.


Assuntos
Flores/química , Oligoelementos/análise , Dianthus , Orchidaceae , Pós , Rosa , Espectrometria de Fluorescência , Espectrometria por Raios X , Análise Espectral
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(11): 3083-6, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22242522

RESUMO

In the condition of sodium hydroxide saponification, the test results using direction extraction and precipitation of cerium from P507 loading organic phase by oxalic acid solution were studied. Infared (IR) spectrum, X-ray diffraction (XRD), transmission electron microscope (TEM) and thermogravimetry (TG-DSC) were used to study and characterize organic cerium precipitates and the final calcined products. The results showed that organic cerium precipitates and final calcined products were spheric organic cerium coordination and spheric cube CeO2 crystal, respectively, showing their morphologies were successive. IR made out that the structures of organic cerium precipitates and final calcined products were different. TG-DSC indicated that the final calcined products weightlessness was 3.5% and chemical composing was CeO2 x 1/3H2O.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(1): 270-3, 2010 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-20302130

RESUMO

For the system of Ce(NO3)2.6H2O and urea solution during homogeneous precipitation method, X-ray diffraction (XRD), infrared spectrum (IR) and especially X-ray photoelectron spectroscopy (XPS) were used to study and characterize the product structure, variety of cerium ion valence, compound surface character and kernel electronic configurations. The results of XRD and IR showed that calcination temperature had a great effect on the cerium ion valence. The products are orthorhombic Ce2 O(CO3)2.H2O with valence III by using homogeneous precipitation method directly. When heated from the temperature 200 degrees C to 250 degrees C, the product of CeO(CO3)2.H2O with valence VI was finally changed into stable CeO2 with valence IV. XPS was used to study the surface character and kernel electronic configurations of the three different compounds through fine scanning of O(1s), Ce(3d) and Ce(4d) apices, and the results approved that the compounds with different valences are caused by the different valence electronic configurations of the products.

9.
J Colloid Interface Sci ; 346(1): 61-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20227713

RESUMO

Large pore ordered mesoporous organosilicas (OMOs) with distinct mesophase structure was synthesized under low temperatures by the co-condensation of 1,2bis(triethoxysilyl)ethane (BTESE) and tetraethyl orthosilicate (TEOS) in acidic solution, using triblock copolymer F127 as a template and 1,3,5-trimethylbenzene (TMB) as a swelling agent. With the decrease of temperature, a mesophase transformation from 2D hexagonal structure (p6mm) via mesostructured cellular foam to a highly ordered 3D cubic structure (Fm3m) was evidenced by small angle X-ray diffraction (SAXS), transmission electron microscopy (TEM) and N(2) sorption. It reveals that the lower synthesis temperatures may influence the hydrolysis and condensation of silica species and the hydrophilic-hydrophobic property of F127, as well as the swelling capacity of F127 micelles with TMB, which resulting in a formation of large pores ordered mesoporous organosilicas with various mesostructures materials. Finally, the enzyme adsorption properties of the OMOs were investigated and the results showed that the OMOs with a 3D large pore structure and regular morphology is much more qualified for enzyme adsorption.


Assuntos
Compostos de Organossilício/química , Compostos de Organossilício/síntese química , Papaína/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Papaína/metabolismo , Tamanho da Partícula , Polietilenos/química , Polipropilenos/química , Porosidade , Propriedades de Superfície , Temperatura
10.
J Phys Chem B ; 112(31): 9354-9, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18613718

RESUMO

Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(2): 254-8, 2007 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-17514949

RESUMO

Infrared (IR) spectrum, X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to study and characterize the coordination mechanisms, products and morphology of organic carboxylic acid during homogeneous precipitation in the system of Ce(NO3)2 x 6 H2O and urea solution. The results showed that monocarboxylic acid stearic acid played a role of surfactant, and the product was still orthorhombic Ce2O(CO3)2 x H2O with a high crystallization degree. In turn, duality-carboxylic acid tartaric acid and tri-carboxylic acid citric acid were combined with Ce3+ to form chelate citric acid and cerium tartaric acid, respectively. The results were caused by different mechanisms of reaction in the solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...