Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1621, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452425

RESUMO

The brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the "mortar" phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol-gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.

2.
Nat Commun ; 10(1): 2794, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243283

RESUMO

Materials combining optical transparency and mechanical strength are highly demanded for electronic displays, structural windows and in the arts, but the oxide-based glasses currently used in most of these applications suffer from brittle fracture and low crack tolerance. We report a simple approach to fabricate bulk transparent materials with a nacre-like architecture that can effectively arrest the propagation of cracks during fracture. Mechanical characterization shows that our glass-based composites exceed up to a factor of 3 the fracture toughness of common glasses, while keeping flexural strengths comparable to transparent polymers, silica- and soda-lime glasses. Due to the presence of stiff reinforcing platelets, the hardness of the obtained composites is an order of magnitude higher than that of transparent polymers. By implementing biological design principles into glass-based materials at the microscale, our approach opens a promising new avenue for the manufacturing of structural materials combining antagonistic functional properties.

3.
Nat Mater ; 16(12): 1272-1273, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170559

RESUMO

This corrects the article DOI: 10.1038/nmat4419.

4.
J Mech Behav Biomed Mater ; 60: 367-377, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26926989

RESUMO

Rough interfaces featuring nanoscale asperities are known to play a major role in the mechanics of nacre. Transferring this concept to artificial bioinspired composites requires a detailed understanding about the effect of the surface topography of reinforcing elements on the mechanical performance of such materials. To gain further insights into the effect of asperity size, hierarchy and coverage on the mechanics of nacre-inspired composites, we decorate alumina microplatelets with silica nanoparticles of selected sizes and use the resulting roughened platelets as reinforcing elements (15vol%) in a commercial epoxy matrix. For a single layer of silica nanoparticles on the platelet surface, increased ultimate strain and toughness are obtained with a large roughening particle size of 250nm. On the contrary, strength and stiffness are enhanced by decreasing the size of asperities using 22nm silica particles. By combining particles of two different sizes (100nm and 22nm) in a hierarchical fashion, we are able to improve stiffness and strength of platelet-reinforced polymers while maintaining high ultimate strain and toughness. Our results indicate that carefully designed hierarchically roughened interfaces lead to a more homogeneous stress distribution within the polymer matrix between the stiff reinforcing elements. By enabling the deformation of a larger fraction of the polymer matrix, this design concept improves the mechanical response of bioinspired composites and can possibly also be exploited to enhance the performance of conventional fiber-reinforced polymers.


Assuntos
Óxido de Alumínio , Materiais Biomiméticos , Teste de Materiais , Dióxido de Silício , Nácar , Resistência à Tração
5.
Nat Mater ; 14(11): 1172-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26390326

RESUMO

Natural composites are often heterogeneous to fulfil functional demands. Manufacturing analogous materials remains difficult, however, owing to the lack of adequate and easily accessible processing tools. Here, we report an additive manufacturing platform able to fabricate complex-shaped parts exhibiting bioinspired heterogeneous microstructures with locally tunable texture, composition and properties, as well as unprecedentedly high volume fractions of inorganic phase (up to 100%). The technology combines an aqueous-based slip-casting process with magnetically directed particle assembly to create programmed microstructural designs using anisotropic stiff platelets in a ceramic, metal or polymer functional matrix. Using quantitative tools to control the casting kinetics and the temporal pattern of the applied magnetic fields, we demonstrate that this approach is robust and can be exploited to design and fabricate heterogeneous composites with thus far inaccessible microstructures. Proof-of-concept examples include bulk composites with periodic patterns of microreinforcement orientation, and tooth-like bilayer parts with intricate shapes exhibiting site-specific composition and texture.


Assuntos
Alumínio/química , Materiais Biomiméticos/química , Cerâmica/química , Materiais Revestidos Biocompatíveis/química , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...