Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 50(1): 540-556, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35983857

RESUMO

PURPOSE: Validation of dosimetry software, such as Monte Carlo (MC) radiation transport codes used for patient-specific absorbed dose estimation, is critical prior to their use in clinical decision making. However, direct experimental validation in the clinic is generally not performed for low/medium-energy beta emitters used in radiopharmaceutical therapy (RPT) due to the challenges of measuring energy deposited by short-range particles. Our objective was to design a practical phantom geometry for radiochromic film (RF)-based absorbed dose measurements of beta-emitting radionuclides and perform experiments to directly validate our in-house developed Dose Planning Method (DPM) MC code dedicated to internal dosimetry. METHODS: The experimental setup was designed for measuring absorbed dose from beta emitters that have a range sufficiently penetrating to ∼200 µm in water as well as to capture any photon contributions to absorbed dose. Assayed 177 Lu and 90 Y liquid sources, 13-450 MBq estimated to deliver 0.5-10 Gy to the sensitive layer of the RF, were injected into the cavity of two 3D-printed half-cylinders that had been sealed with 12.7 µm or 25.4 µm thick Kapton Tape. A 3.8 × 6 cm strip of GafChromic EBT3 RF was sandwiched between the two taped half-cylinders. After 2-48 h exposures, films were retrieved and wipe tested for contamination. Absorbed dose to the RF was measured using a commercial triple-channel dosimetry optimization method and a calibration generated via 6 MV photon beam. Profiles were analyzed across the central 1 cm2 area of the RF for validation. Eleven experiments were completed with 177 Lu and nine with 90 Y both in saline and a bone equivalent solution. Depth dose curves were generated for 177 Lu and 90 Y stacking multiple RF strips between a single filled half-cylinder and an acrylic backing. All experiments were modeled in DPM to generate voxelized MC absorbed dose estimates. We extended our study to benchmark general purpose MC codes MCNP6 and EGSnrc against the experimental results as well. RESULTS: A total of 20 experiments showed that both the 3D-printed phantoms and the final absorbed dose values were reproducible. The agreement between the absorbed dose estimates from the RF measurements and DPM was on average -4.0% (range -10.9% to 3.2%) for all single film 177 Lu experiments and was on average -1.0% (range -2.7% to 0.7%) for all single film 90 Y experiments. Absorbed depth dose estimates by DPM agreed with RF on average 1.2% (range -8.0% to 15.2%) across all depths for 177 Lu and on average 4.0% (range -5.0% to 9.3%) across all depths for 90 Y. DPM absorbed dose estimates agreed with estimates from EGSnrc and MCNP across the board, within 4.7% and within 3.4% for 177 Lu and 90 Y respectively, for all geometries and across all depths. MC showed that absorbed dose to RF from betas was greater than 92% of the total (betas + other radiations) for 177 Lu, indicating measurement of dominant beta contribution with our design. CONCLUSIONS: The reproducible results with a RF insert in a simple phantom designed for liquid sources demonstrate that this is a reliable setup for experimentally validating dosimetry algorithms used in therapies with beta-emitting unsealed sources. Absorbed doses estimated with the DPM MC code showed close agreement with RF measurement and with results from two general purpose MC codes, thereby validating the use of this algorithms for clinical RPT dosimetry.


Assuntos
Radiometria , Software , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Algoritmos , Imagens de Fantasmas , Método de Monte Carlo , Impressão Tridimensional , Dosimetria Fotográfica/métodos
2.
Nucl Med Commun ; 43(8): 892-900, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703269

RESUMO

BACKGROUND: Our goal is to quantitatively compare radiotracer biodistributions within tumors and major normal organs on pretherapy 68 Ga-DOTATATE PET to post-therapy 177 Lu-DOTATATE single-photon emission computed tomography (SPECT) in patients receiving peptide receptor radionuclide therapy (PRRT). METHODS: PET/CT at ~ 60 min postinjection of Ga-68 DOTATATE and research 177 Lu-SPECT/CT imaging ~ at 4 h (SPECT1) and ~ 24 h (SPECT2) post-cycle#1 were available. Manual contours of lesions on baseline CT or MRI were applied to co-registered SPECT/CT and PET/CT followed by deep learning-based CT auto-segmentation of organs. Tumor-to-normal organ ratios (TNR) were calculated from standardized uptake values (SUV) mean and SUV peak for tumor, and SUV mean for non-tumoral liver (nliver), spleen and kidney. RESULTS: There were 90 lesons in 24 patients with progressive metastatic neuroendocrine tumor. The correlation between PET and SPECT SUV TNRs were poor/moderate: PET versus SPECT1 R 2 = 0.19, 0.21, 0.29; PET versus SPECT2 R 2 = 0.06, 0.16, 0.33 for TNR nliver ,TNR spleen ,TNR kidney , respectively. Across all patients, the average value of the TNR measured on PET was significantly lower than on SPECT at both time points ( P < 0.001). Using SUV mean for tumor, average TNR values and 95% confidence intervals (CI) were PET: TNR nliver = 3.5 [CI: 3.0-3.9], TNR spleen = 1.3 [CI, 1.2-1.5], TNR kidney = 1.7 [CI: 1.6-1.9]; SPECT1: TNR nliver = 10 [CI: 8.2-11.7], TNR spleen = 2.9 [CI: 2.5-3.4], TNR kidney = 2.8 [CI: 2.3-3.3]; SPECT2: TNR nliver = 16.9 [CI: 14-19.9], TNR spleen = 3.6 [CI: 3-4.2], TNR kidney = 3.6 [CI: 3.0-4.2]. Comparison of PET and SPECT results in a sphere phantom study demonstrated that these differences are not attributed to imaging modality. CONCLUSIONS: Differences in TNR exist for the theranostic pair, with significantly higher SUV TNR on 177 Lu SPECT compared with 68 Ga PET. We postulate this phenomenon is due to temporal differences in DOTATATE uptake and internalization in tumor as compared to normal organs.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Radioisótopos de Gálio , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Cintilografia , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
3.
J Nucl Med ; 63(12): 1949-1955, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483964

RESUMO

Imaging of cholesterol use is possible with the 131I scintiscanning/SPECT agent NP-59. This agent provided a noninvasive measure of adrenal function and steroid synthesis. However, iodine isotopes resulted in poor resolution, manufacturing challenges, and high radiation dosimetry to patients that have limited their use and clinical impact. A 18F analog would address these shortcomings while retaining the ability to image cholesterol use. The goal of this study was to prepare and evaluate a 18F analog of NP-59 to serve as a PET imaging agent for functional imaging of the adrenal glands based on cholesterol use. Previous attempts to prepare such an analog of NP-59 have proven elusive. Preclinical and clinical evaluation could be performed once the new fluorine analog of NP-59 production was established. Methods: The recent development of a new reagent for fluorination along with an improved route to the NP-59 precursor allowed for the preparation of a fluorine analog of NP-59, FNP-59. The radiochemistry for the 18F-radiolabeled 18F-FNP-59 is described, and rodent radiation dosimetry studies and in vivo imaging in New Zealand rabbits was performed. After in vivo toxicity studies, an investigational new drug approval was obtained, and the first-in-humans images with dosimetry using the agent were acquired. Results: In vivo toxicity studies demonstrated that FNP-59 is safe for use at the intended dose. Biodistribution studies with 18F-FNP-59 demonstrated a pharmacokinetic profile similar to that of NP-59 but with decreased radiation exposure. In vivo animal images demonstrated expected uptake in tissues that use cholesterol: gallbladder, liver, and adrenal glands. In this first-in-humans study, subjects had no adverse events and images demonstrated accumulation in target tissues (liver and adrenal glands). Manipulation of uptake was also demonstrated with patients who received cosyntropin, resulting in improved uptake. Conclusion: 18F-FNP-59 provided higher resolution images, with lower radiation dose to the subjects. It has the potential to provide a noninvasive test for patients with adrenocortical diseases.


Assuntos
Adosterol , Flúor , Animais , Humanos , Coelhos , Distribuição Tecidual , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Colesterol
4.
J Nucl Med ; 63(11): 1665-1672, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35422445

RESUMO

Patient-specific dosimetry in radiopharmaceutical therapy (RPT) is impeded by the lack of tools that are accurate and practical for the clinic. Our aims were to construct and test an integrated voxel-level pipeline that automates key components (organ segmentation, registration, dose-rate estimation, and curve fitting) of the RPT dosimetry process and then to use it to report patient-specific dosimetry in 177Lu-DOTATATE therapy. Methods: An integrated workflow that automates the entire dosimetry process, except tumor segmentation, was constructed. First, convolutional neural networks (CNNs) are used to automatically segment organs on the CT portion of one post-therapy SPECT/CT scan. Second, local contour intensity-based SPECT--SPECT alignment results in volume-of-interest propagation to other time points. Third, dose rate is estimated by explicit Monte Carlo (MC) radiation transport using the fast, Dose Planning Method code. Fourth, the optimal function for dose-rate fitting is automatically selected for each voxel. When reporting mean dose, we apply partial-volume correction, and uncertainty is estimated by an empiric approach of perturbing segmentations. Results: The workflow was used with 4-time-point 177Lu SPECT/CT imaging data from 20 patients with 77 neuroendocrine tumors, segmented by a radiologist. CNN-defined kidneys resulted in high Dice values (0.91-0.94) and only small differences (2%-5%) in mean dose when compared with manual segmentation. Contour intensity-based registration led to visually enhanced alignment, and the voxel-level fitting had high R 2 values. Across patients, dosimetry results were highly variable; for example, the average of the mean absorbed dose (Gy/GBq) was 3.2 (range, 0.2-10.4) for lesions, 0.49 (range, 0.24-1.02) for left kidney, 0.54 (range, 0.31-1.07) for right kidney, and 0.51 (range, 0.27-1.04) for healthy liver. Patient results further demonstrated the high variability in the number of cycles needed to deliver hypothetical threshold absorbed doses of 23 Gy to kidney and 100 Gy to tumor. The uncertainty in mean dose, attributable to variability in segmentation, averaged 6% (range, 3%-17%) for organs and 10% (range, 3%-37%) for lesions. For a typical patient, the time for the entire process was about 25 min (∼2 min manual time) on a desktop computer, including time for CNN organ segmentation, coregistration, MC dosimetry, and voxel curve fitting. Conclusion: A pipeline integrating novel tools that are fast and automated provides the capacity for clinical translation of dosimetry-guided RPT.


Assuntos
Tumores Neuroendócrinos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único , Tumores Neuroendócrinos/tratamento farmacológico , Radioisótopos , Receptores de Peptídeos
5.
EJNMMI Res ; 8(1): 50, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29904808

RESUMO

BACKGROUND: A major toxicity concern in radioembolization therapy of hepatic malignancies is radiation-induced pneumonitis and sclerosis due to hepatopulmonary shunting of 90Y microspheres. Currently, 99mTc macroaggregated albumin (99mTc-MAA) imaging is used to estimate the lung shunt fraction (LSF) prior to treatment. The aim of this study was to evaluate the accuracy/precision of LSF estimated from 99mTc planar and SPECT/CT phantom imaging, and within this context, to compare the corresponding LSF and lung-absorbed dose values from 99mTc-MAA patient studies. Additionally, LSFs from pre- and post-therapy imaging were compared. RESULTS: A liver/lung torso phantom filled with 99mTc to achieve three lung shunt values was scanned by planar and SPECT/CT imaging with repeat acquisitions to assess accuracy and precision. To facilitate processing of patient data, a workflow that relies on SPECT and CT-based auto-contouring to define liver and lung volumes for the LSF calculation was implemented. Planar imaging-based LSF estimates for 40 patients, obtained from their medical records, were retrospectively compared with SPECT/CT imaging-based calculations with attenuation and scatter correction. Additionally, in a subset of 20 patients, the pre-therapy estimates were compared with 90Y PET/CT-based measurements. In the phantom study, improved accuracy in LSF estimation was achieved using SPECT/CT with attenuation and scatter correction (within 13% of the true value) compared with planar imaging (up to 44% overestimation). The results in patients showed a similar trend with planar imaging significantly overestimating LSF compared to SPECT/CT. There was no correlation between lung shunt estimates and the delay between 99mTc-MAA administration and scanning, but off-target extra hepatic uptake tended to be more likely in patients with a longer delay. The mean lung absorbed dose predictions for the 28 patients who underwent therapy was 9.3 Gy (range 1.3-29.4) for planar imaging and 3.2 Gy (range 0.4-13.4) for SPECT/CT. For the patients with post-therapy imaging, the mean LSF from 90Y PET/CT was 1.0%, (range 0.3-2.8). This value was not significantly different from the mean LSF estimate from 99mTc-MAA SPECT/CT (mean 1.0%, range 0.4-1.6; p = 0.968), but was significantly lower than the mean LSF estimate based on planar imaging (mean 4.1%, range 1.2-15.0; p = 0.0002). CONCLUSIONS: The improved accuracy demonstrated by the phantom study, agreement with 90Y PET/CT in patient studies, and the practicality of using auto-contouring for liver/lung definition suggests that 99mTc-MAA SPECT/CT with scatter and attenuation corrections should be used for lung shunt estimation prior to radioembolization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...