Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 91(12): 4605-10, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17012324

RESUMO

We constructed a "temperature-jump/stopped-flow" apparatus that allows us to study fast enzyme reactions at extremely high temperatures. This apparatus is a redesigned stopped-flow which is capable of mixing the reactants on a submillisecond timescale concomitant with a temperature-jump even as large as 60 degrees C. We show that enzyme reactions that are faster than the denaturation process can be investigated above denaturation temperatures. In addition, the temperature-jump/stopped-flow enables us to investigate at physiological temperature the mechanisms of many human enzymes, which was impossible until now because of their heat instability. Furthermore, this technique is extremely useful in studying the progress of heat-induced protein unfolding. The temperature-jump/stopped-flow method combined with the application of structure-specific fluorescence signals provides novel opportunities to study the stability of certain regions of enzymes and identify the unfolding-initiating regions of proteins. The temperature-jump/stopped-flow technique may become a breakthrough in exploring new features of enzymes and the mechanism of unfolding processes.


Assuntos
Miosina Tipo II/química , Dobramento de Proteína , Animais , Dictyostelium/enzimologia , Cinética , Mutação , Miosina Tipo II/genética , Desnaturação Proteica , Estrutura Terciária de Proteína , Temperatura
2.
Biophys J ; 91(7): 2665-77, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16861276

RESUMO

The atomic force microscope is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. To exploit the advantages of both methods, here we developed a spatially and temporally synchronized total internal reflection fluorescence and atomic force microscope system. The instrument, which we hereby call STIRF-AFM, is a stage-scanning device in which the mechanical and optical axes are coaligned to achieve spatial synchrony. At each point of the scan the sample topography (atomic force microscope) and fluorescence (photon count or intensity) information are simultaneously recorded. The tool was tested and validated on various cellular (monolayer cells in which actin filaments and intermediate filaments were fluorescently labeled) and biomolecular (actin filaments and titin molecules) systems. We demonstrate that with the technique, correlated sample topography and fluorescence images can be recorded, soft biomolecular systems can be mechanically manipulated in a targeted fashion, and the fluorescence of mechanically stretched titin can be followed with high temporal resolution.


Assuntos
Citoesqueleto de Actina/metabolismo , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodos , Subfragmentos de Miosina/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Conectina , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia de Força Atômica/instrumentação , Microscopia de Fluorescência/instrumentação , Proteínas Musculares/metabolismo , Proteínas Musculares/ultraestrutura , Subfragmentos de Miosina/ultraestrutura , Miosinas/ultraestrutura , Proteínas Quinases/metabolismo , Proteínas Quinases/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...