Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108627, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188520

RESUMO

An efficient neutrophil response is critical for fighting bacterial infections, which remain a significant global health concern; therefore, modulating neutrophil function could be an effective therapeutic approach. While we have a general understanding of how neutrophils respond to bacteria, how neutrophil function differs in response to diverse bacterial infections remains unclear. Here, we use a microfluidic infection-on-a-chip device to investigate the neutrophil response to four bacterial species: Pseudomonas aeruginosa, Salmonella enterica, Listeria monocytogenes, and Staphylococcus aureus. We find enhanced neutrophil extravasation to L. monocytogenes, a limited overall response to S. aureus, and identify IL-6 as universally important for neutrophil extravasation. Furthermore, we demonstrate a higher percentage of neutrophils generate reactive oxygen species (ROS) when combating gram-negative bacteria versus gram-positive bacteria. For all bacterial species, we found the percentage of neutrophils producing ROS increased following extravasation through an endothelium, underscoring the importance of studying neutrophil function in physiologically relevant models.

2.
IEEE Trans Biomed Eng ; 71(1): 217-226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37450356

RESUMO

OBJECTIVE: Recent advancements demonstrate the significant role of digital microfluidics in automating laboratory work with DNA and on-site viral testing. However, since commercially available instruments are limited to droplet manipulation, our work addresses the need for accelerated integration of other components, such as temperature control, that can expand the application domain. METHODS: We developed PhageBox-an accessible device that can be used as a biochip extension. At hardware level, PhageBox integrates temperature and electromagnetic control modules. At software level, PhageBox is controlled by embedded software containing a unique model for bio-protocol programming, and a graphical user interface for visual device feedback and operation. RESULTS: To evaluate PhageBox's efficacy for biomedical applications, we performed functional testing. Similarly, we validated the temperature control using thermography, obtaining a range of ±0.2[Formula: see text]. The electromagnets produced a magnetic force of 15 milliTesla, demonstrating precise immobilization of magnetic beads. We show the potential of PhageBox for bacteriophage research through three initial protocols: a universal framework for PCR, T7 bacteriophage restriction enzyme digestion, and concentrating ϕX174 RF genomic DNA. CONCLUSION: Our work presents an open-source hardware and software extension for digital microfluidics devices. This extension integrates temperature and electromagnetic modules, demonstrating efficacy in biomedical applications and potential for bacteriophage research. SIGNIFICANCE: We developed PhageBox to be accessible: the components are off-the-shelf at a low cost ( ≤ $200), and the hardware designs and software code are open-source. With the long aim of ensuring reproducibility and accelerating collaboration, we also provide a DIY-build document.


Assuntos
Bacteriófagos , Microfluídica , Reprodutibilidade dos Testes , Software , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...