Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(11): e79316, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265765

RESUMO

Dysfunctional zinc signaling is implicated in disease processes including cardiovascular disease, Alzheimer's disease and diabetes. Of the twenty-four mammalian zinc transporters, ZIP7 has been identified as an important mediator of the 'zinc wave' and in cellular signaling. Utilizing siRNA targeting Zip7 mRNA we have identified that Zip7 regulates glucose metabolism in skeletal muscle cells. An siRNA targeting Zip7 mRNA down regulated Zip7 mRNA 4.6-fold (p = 0.0006) when compared to a scramble control. This was concomitant with a reduction in the expression of genes involved in glucose metabolism including Agl, Dlst, Galm, Gbe1, Idh3g, Pck2, Pgam2, Pgm2, Phkb, Pygm, Tpi1, Gusb and Glut4. Glut4 protein expression was also reduced and insulin-stimulated glycogen synthesis was decreased. This was associated with a reduction in the mRNA expression of Insr, Irs1 and Irs2, and the phosphorylation of Akt. These studies provide a novel role for Zip7 in glucose metabolism in skeletal muscle and highlight the importance of this transporter in contributing to glycaemic control in this tissue.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Glucose/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicogênio/metabolismo , Resistência à Insulina , Camundongos , Fosforilação , Músculo Quadríceps/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
2.
J Nutr Metab ; 2012: 173712, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23304467

RESUMO

Zinc is an essential trace element that plays a vital role in maintaining many biological processes and cellular homeostasis. Dysfunctional zinc signaling is associated with a number of chronic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. Cellular homeostasis requires mechanisms that tightly control the uptake, storage, and distribution of zinc. This is achieved through the coordinated actions of zinc transporters and metallothioneins. Evidence on the role of these proteins in type 2 diabetes mellitus (T2DM) is now emerging. Zinc plays a key role in the synthesis, secretion and action of insulin in both physiological and pathophysiological states. Moreover, recent studies highlight zinc's dynamic role as a "cellular second messenger" in the control of insulin signaling and glucose homeostasis. This suggests that zinc plays an unidentified role as a novel second messenger that augments insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...