Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(14): 2789-2814, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38551452

RESUMO

The OH-initiated photo-oxidation of piperidine and the photolysis of 1-nitrosopiperidine were investigated in a large atmospheric simulation chamber and in theoretical calculations based on CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The rate coefficient for the reaction of piperidine with OH radicals was determined by the relative rate method to be kOH-piperidine = (1.19 ± 0.27) × 10-10 cm3 molecule-1 s-1 at 304 ± 2 K and 1014 ± 2 hPa. Product studies show the piperidine + OH reaction to proceed via H-abstraction from both CH2 and NH groups, resulting in the formation of the corresponding imine (2,3,4,5-tetrahydropyridine) as the major product and in the nitramine (1-nitropiperidine) and nitrosamine (1-nitrosopiperidine) as minor products. Analysis of 1-nitrosopiperidine photolysis experiments under natural sunlight conditions gave the relative rates jrel = j1-nitrosoperidine/jNO2 = 0.342 ± 0.007, k3/k4a = 0.53 ± 0.05 and k2/k4a = (7.66 ± 0.18) × 10-8 that were subsequently employed in modeling the piperidine photo-oxidation experiments, from which the initial branchings between H-abstraction from the NH and CH2 groups, kN-H/ktot = 0.38 ± 0.08 and kC2-H/ktot = 0.49 ± 0.19, were derived. All photo-oxidation experiments were accompanied by particle formation that was initiated by the acid-base reaction of piperidine with nitric acid. Primary photo-oxidation products including both 1-nitrosopiperidine and 1-nitropiperidine were detected in the particles formed. Quantum chemistry calculations on the OH initiated atmospheric photo-oxidation of piperidine suggest the branching in the initial H-abstraction routes to be ∼35% N1, ∼50% C2, ∼13% C3, and ∼2% C4. The theoretical study produced an atmospheric photo-oxidation mechanism, according to which H-abstraction from the C2 position predominantly leads to 2,3,4,5-tetrahydropyridine and H-abstraction from the C3 position results in ring opening followed by a complex autoxidation, of which the first few steps are mapped in detail. H-abstraction from the C4 position is shown to result mainly in the formation of piperidin-4-one and 2,3,4,5-tetrahydropyridin-4-ol, whereas H-abstraction from N1 under atmospheric conditions primarily leads to 2,3,4,5-tetrahydropyridine and in minor amounts of 1-nitrosopiperidine and 1-nitropiperidine. The calculated rate coefficient for the piperidine + OH reaction agrees with the experimental value within 35%, and aligning the theoretical numbers to the experimental value results in k(T) = 2.46 × 10-12 × exp(486 K/T) cm3 molecule-1 s-1 (200-400 K).

2.
J Phys Chem A ; 126(20): 3247-3264, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544412

RESUMO

The OH-initiated photo-oxidation of N-methylmethanimine, CH3N═CH2, was investigated in the 200 m3 EUPHORE atmospheric simulation chamber and in a 240 L stainless steel photochemical reactor employing time-resolved online FTIR and high-resolution PTR-ToF-MS instrumentation and in theoretical calculations based on quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations forecast the OH reaction to primarily proceed via H-abstraction from the ═CH2 group and π-system C-addition, whereas H-abstraction from the -CH3 group is a minor route and forecast that N-addition can be disregarded under atmospheric conditions. Theoretical studies of CH3N═CH2 photolysis and the CH3N═CH2 + O3 reaction show that these removal processes are too slow to be important in the troposphere. A detailed mechanism for OH-initiated atmospheric degradation of CH3N═CH2 was obtained as part of the theoretical study. The photo-oxidation experiments, obstructed in part by the CH3N═CH2 monomer-trimer equilibrium, surface reactions, and particle formation, find CH2═NCHO and CH3N═CHOH/CH2═NCH2OH as the major primary products in a ratio 18:82 ± 3 (3σ-limit). Alignment of the theoretical results to the experimental product distribution results in a rate coefficient, showing a minor pressure dependency under tropospheric conditions and that can be parametrized k(T) = 5.70 × 10-14 × (T/298 K)3.18 × exp(1245 K/T) cm3 molecule-1 s-1 with k298 = 3.7 × 10-12 cm3 molecule-1 s-1. The atmospheric fate of CH3N═CH2 is discussed, and it is concluded that, on a global scale, hydrolysis in the atmospheric aqueous phase to give CH3NH2 + CH2O will constitute a dominant loss process. N2O will not be formed in the atmospheric gas phase degradation, and there are no indications of nitrosamines and nitramines formed as primary products.

3.
J Phys Chem A ; 125(34): 7502-7519, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34424704

RESUMO

The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 × 10-12 × exp (505/T) cm3 molecule-1 s-1 to the experimental value kexp,300K = 2.8 × 10-11 cm3 molecule-1 s-1. The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the -CH3 groups (5-10%), -CH2- group, (>70%) and -NH2 group (5-20%), whereas hydrogen abstraction from the -OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C═NH], 2-iminopropanol [(CH3)(CH2OH)C═NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO2, were detected in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave ΔvapH = 80 ± 16 kJ mol-1 and an estimated vapor pressure of (1.3 ± 0.3) × 10-5 Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented.

4.
J Phys Chem A ; 125(1): 411-422, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33378187

RESUMO

The OH-initiated photo-oxidation of piperazine and 1-nitropiperazine as well as the photolysis of 1-nitrosopiperazine were investigated in a large atmospheric simulation chamber. The rate coefficient for the reaction of piperazine with OH radicals was determined by the relative rate method to be kOH-piperazine = (2.8 ± 0.6) × 10-10 cm3 molecule-1 s-1 at 307 ± 2 K and 1014 ± 2 hPa. Product studies showed the piperazine + OH reaction to proceed both via C-H and N-H abstraction, resulting in the formation of 1,2,3,6-tetrahydropyrazine as the major product and in 1-nitropiperazine and 1-nitrosopiperazine as minor products. The branching in the piperazinyl radical reactions with NO, NO2, and O2 was obtained from 1-nitrosopiperazine photolysis experiments and employed analyses of the 1-nitropiperazine and 1-nitrosopiperazine temporal profiles observed during piperazine photo-oxidation. The derived initial branching between N-H and C-H abstraction by OH radicals, kN-H/(kN-H + kC-H), was 0.18 ± 0.04. All experiments were accompanied by substantial aerosol formation that was initiated by the reaction of piperazine with nitric acid. Both primary and secondary photo-oxidation products including 1-nitropiperazine and 1,4-dinitropiperazine were detected in the aerosol particles formed. Corroborating atmospheric photo-oxidation schemes for piperazine and 1-nitropiperazine were derived from M06-2X/aug-cc-pVTZ quantum chemistry calculations and master equation modeling of the pivotal reaction steps. The atmospheric chemistry of piperazine is evaluated, and a validated chemical mechanism for implementation in dispersion models is presented.

5.
J Phys Chem A ; 124(32): 6562-6571, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32663395

RESUMO

The reaction of CH3NC with OH radicals was studied in smog chamber experiments employing PTR-ToF-MS and long-path FTIR detection. The rate coefficient was determined to be kCH3NC+OH = (7.9 ± 0.6) × 10-11 cm3 molecule-1 s-1 at 298 ± 3 K and 1013 ± 10 hPa; methyl isocyanate was the sole observed product of the reaction. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ quantum chemistry calculations showing the reaction to proceed primarily via electrophilic addition to the isocyanide carbon atom. On the basis of the quantum chemical data, the kinetics of the OH reaction was simulated using a master equation model revealing the rate coefficient to be nearly independent of pressure at tropospheric conditions and having a negative temperature dependence with kOH = 4.2 × 10-11 cm3 molecule-1 s-1 at 298 K. Additional quantum chemistry calculations on the CH3NC reactions with O3 and NO3 show that these reactions are of little importance under atmospheric conditions. The atmospheric fate of methyl isocyanide is discussed.

6.
J Phys Chem A ; 122(18): 4470-4480, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29659281

RESUMO

The OH-initiated atmospheric degradation of tert-butylamine (tBA), (CH3)3CNH2, was investigated in a detailed quantum chemistry study and in laboratory experiments at the European Photoreactor (EUPHORE) in Spain. The reaction was found to mainly proceed via hydrogen abstraction from the amino group, which in the presence of nitrogen oxides (NO x), generates tert-butylnitramine, (CH3)3CNHNO2, and acetone as the main reaction products. Acetone is formed via the reaction of tert-butylnitrosamine, (CH3)3CNHNO, and/or its isomer tert-butylhydroxydiazene, (CH3)3CN═NOH, with OH radicals, which yield nitrous oxide (N2O) and the (CH3)3C radical. The latter is converted to acetone and formaldehyde. Minor predicted and observed reaction products include formaldehyde, 2-methylpropene, acetamide and propan-2-imine. The reaction in the EUPHORE chamber was accompanied by strong particle formation which was induced by an acid-base reaction between photochemically formed nitric acid and the reagent amine. The tert-butylaminium nitrate salt was found to be of low volatility, with a vapor pressure of 5.1 × 10-6 Pa at 298 K. The rate of reaction between tert-butylamine and OH radicals was measured to be 8.4 (±1.7) × 10-12 cm3 molecule-1 s-1 at 305 ± 2 K and 1015 ± 1 hPa.

7.
Environ Sci Technol ; 51(3): 1321-1329, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27936633

RESUMO

FTIR/smog chamber experiments and ab initio quantum calculations were performed to investigate the atmospheric chemistry of (CF3)2CFCN, a proposed replacement compound for the industrially important sulfur hexafluoride, SF6. The present study determined k(Cl + (CF3)2CFCN) = (2.33 ± 0.87) × 10-17, k(OH + (CF3)2CFCN) = (1.45 ± 0.25) × 10-15, and k(O3 + (CF3)2CFCN) ≤ 6 × 10-24 cm3 molecule-1 s-1, respectively, in 700 Torr of N2 or air diluent at 296 ± 2 K. The main atmospheric sink for (CF3)2CFCN was determined to be reaction with OH radicals. Quantum chemistry calculations, supported by experimental evidence, shows that the (CF3)2CFCN + OH reaction proceeds via OH addition to -C(≡N), followed by O2 addition to -C(OH)═N·, internal H-shift, and OH regeneration. The sole atmospheric degradation products of (CF3)2CFCN appear to be NO, COF2, and CF3C(O)F. The atmospheric lifetime of (CF3)2CFCN is approximately 22 years. The integrated cross section (650-1500 cm-1) for (CF3)2CFCN is (2.22 ± 0.11) × 10-16 cm2 molecule-1 cm-1 which results in a radiative efficiency of 0.217 W m-2 ppb-1. The 100-year Global Warming Potential (GWP) for (CF3)2CFCN was calculated as 1490, a factor of 15 less than that of SF6.


Assuntos
Cloro/química , Radical Hidroxila/química , Aquecimento Global
8.
J Phys Chem A ; 120(35): 6970-7, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509322

RESUMO

The reaction rates of (CH3)2NNO and (CH3CH2)2NNO with NO3 radicals were determined relative to formaldehyde (CH2O) and ethene (CH2CH2) at 298 ± 2 K and 1013 ± 10 hPa in purified air by long path FTIR spectroscopy. The reactions are too slow to be of importance at atmospheric conditions: kNO3+(CH3)2NNO = (1.47 ± 0.23) × 10(-16) and kNO3+(CH3CH2)2NNO = (5.1 ± 0.4) × 10(-16) cm(3) molecule(-1) s(-1) (1σ error limits). Theoretical calculations, based on CCSD(T*)-F12a/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ results, predict the corresponding imines as the sole primary products in nitrosamine reactions with NO3 and OH radicals.

9.
J Phys Chem A ; 120(20): 3450-5, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27135379

RESUMO

The FTIR matrix isolation spectra of H2SO4 vapors show a group of bands with synchronous growth of their relative intensities which is independent of the water species content of the matrix layer. Their frequency positions indicate that the species they represent is H-bonded and composed of all three components (H2SO4, H2O, and SO3) involved in the vapor decomposition equilibrium of the acid molecule. Structure, stabilization energies, and vibrational frequencies of several H-bonded complexes between these components were considered in B3LYP calculations employing Dunning's correlation-consistent aug-cc-pVTZ basis sets. Correlations between spectral shifts, bond lengths, and H-bond energies were also considered. The best fitting complex is a ring structured 1:1:1 H2SO4·H2O·SO3. The indications are that the complex is formed in the vapor phase and not after deposition. The atmospheric significance may be in its ability to serve as a H-bonding nucleation center even without the presence of additional contaminants.

10.
J Phys Chem A ; 120(8): 1222-30, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26859252

RESUMO

The kinetics of OH radical reaction with formamide was studied by the relative rate method employing proton transfer reaction-mass spectrometry detection at the European Photochemical Reactor in Valencia, Spain. The rate coefficient was determined to be (4.5 ± 0.4) × 10(-12) cm(3) molecule(-1) s(-1) at 309 ± 3 K and 1013 ± 1 hPa. Isocyanic acid was observed as the sole product. The experimental results are supported by quantum chemical calculations and kinetic simulations using a master equation model. The calculated rate coefficient is independent of pressure at tropospheric conditions and can be accurately described by an Arrhenius expression having negative activation energy. The reaction is predicted to proceed exclusively via C-H abstraction.

11.
J Phys Chem A ; 119(31): 8497-502, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26159036

RESUMO

The infrared spectra of formic acid/argon matrix layers deposited after flowing over a drying agent show distinct new bands when compared to matrix layers deposited without going through a drying process. The new bands are assigned as due to a formic acid/carbon monoxide H-bonded complex. Several complexes of HCOOH/CO/H2O and HCOOH/CO2 composition have been characterized in B3LYP and MP2 calculations. Comparison with experimental results indicate that the best agreement is obtained for a 1:1 HCOOH-CO hydrogen bonded complex formed between formic acid and CO originating from the decomposition process HCOOH → CO + H2O. Spectral and computational evidence is presented for the formation of HCOOH/CO2 complexes as a result of the HCOOH → CO2 + H2 decomposition path.

12.
J Phys Chem A ; 119(11): 2562-7, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25654214

RESUMO

Acetaldehyde is a hazardous pollutant found in indoor and ambient air. Acetaldehyde photolysis is pressure- and wavelength-dependent with three distinct product channels. In this study, the photolysis rates of CH3CHO, CD3CDO, and CD3CHO are studied in natural tropospheric conditions using long path FTIR spectroscopy, at the European Photoreactor Facility (EUPHORE) in Valencia, Spain. The average relative photolysis rate as an average of four experiments for the fully deuterated isotopologue is j(CH3CHO)/j(CD3CDO) = 1.75 ± 0.04, and as a result of a single experiment j(CH3CHO)/j(CD3CHO) = 1.10 ± 0.10. These results, combined with our previous determination of j(CH3CHO)/j(CH3CDO) = 1.26 ± 0.03, provide mechanistic insight into the photodissociation dynamics of the photoexcited species. Despite the extensive isotopic scrambling in photoexcited acetaldehyde that has recently been reported, the position of the substitution has a clear effect on the relative photolysis rates.

13.
Phys Chem Chem Phys ; 17(10): 7046-59, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25687949

RESUMO

The reactions of OH radicals with CH3NHCHO (N-methylformamide, MF) and (CH3)2NCHO (N,N-dimethylformamide, DMF) have been studied by experimental and computational methods. Rate coefficients were determined as a function of temperature (T = 260-295 K) and pressure (P = 30-600 mbar) by the flash photolysis/laser-induced fluorescence technique. OH radicals were produced by laser flash photolysis of 2,4-pentanedione or tert-butyl hydroperoxide under pseudo-first order conditions in an excess of the corresponding amide. The rate coefficients obtained show negative temperature dependences that can be parameterized as follows: kOH+MF = (1.3 ± 0.4) × 10(-12) exp(3.7 kJ mol(-1)/(RT)) cm(3) s(-1) and kOH+DMF = (5.5 ± 1.7) × 10(-13) exp(6.6 kJ mol(-1)/(RT)) cm(3) s(-1). The rate coefficient kOH+MF shows very weak positive pressure dependence whereas kOH+DMF was found to be independent of pressure. The Arrhenius equations given, within their uncertainty, are valid for the entire pressure range of our experiments. Furthermore, MF and DMF smog-chamber photo-oxidation experiments were monitored by proton-transfer-reaction time-of-flight mass spectrometry. Atmospheric MF photo-oxidation results in 65% CH3NCO (methylisocyanate), 16% (CHO)2NH, and NOx-dependent amounts of CH2[double bond, length as m-dash]NH and CH3NHNO2 as primary products, while DMF photo-oxidation results in around 35% CH3N(CHO)2 as primary product and 65% meta-stable (CH3)2NC(O)OONO2 degrading to NOx-dependent amounts of CH3N[double bond, length as m-dash]CH2 (N-methylmethanimine), (CH3)2NNO (N-nitroso dimethylamine) and (CH3)2NNO2 (N-nitro dimethylamine). The potential for nitramine formation in MF photo-oxidation is comparable to that of methylamine whereas the potential to form nitrosamine and nitramine in DMF photo-oxidation is larger than for dimethylamine. Quantum chemistry supported atmospheric degradation mechanisms for MF and DMF are presented. Rate coefficients and initial branching ratios calculated with statistical rate theory based on molecular data from quantum chemical calculations at the CCSD(T*)-F12a/aug-cc-pVTZ//MP2/aug-cc-pVTZ level of theory show satisfactory agreement with the experimental results. It turned out that adjustment of calculated threshold energies by 0.2 to 8.8 kJ mol(-1) lead to agreement between experimental and predicted results.

14.
J Phys Chem A ; 119(11): 2271-80, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25207794

RESUMO

Frozen core MP2 and DFT computations were carried out on possible configurations of 1:1 H2SO4·CH3OH and 1:1:1 H2SO4·CH3OH·H2O complexes. Minimum energy structures, stabilization energies, H-bond lengths and vibrational frequencies were calculated. The latter complex can exist in either sequential "linear" configurations involving four H-bonds or "cyclic" structures involving three H-bonds only. However, there is little difference in the energy of stabilization between these two possible forms, indicating a "cooperative effect" between the H-bonds in the latter. This effect is also evidenced by the calculated H-bond lengths. In the cyclic complex, the hydroxyl of either CH3OH or H2O may be the proton donor to the H-bond between them. Argon matrix isolation FTIR spectra of layers with various concentration ratios were recorded. In the hydroxyl stretch wavenumber regions several weak new bands were observed. Their position was found to fit best the cyclic structures. The observed red shifts exceed the corresponding calculated values. Together with the considerable observed bandwidths they are further manifestations of the cooperative effect between the H-bonds. The lower skeletal mode wavenumber regions show a number of sharper bands compatible with those previously reported for dimethyl sulfate and hydrogen methyl sulfate, indicating their formation in the vapor mixing region or at the solid matrix layer interface.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt A: 51-7, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24238936

RESUMO

Raman spectra of 1,1-difluoro-1-silacyclohexane as a liquid, and as a solid at 78 K were recorded and depolarization data obtained. The infrared spectra of the vapour, liquid and amorphous and crystalline solids have been studied. In the low temperature IR and Raman spectra eight and three bands, respectively, were shifted a few cm(-1) when the sample crystallized. No bands vanished after crystallization in agreement with the assumption that only one conformer (chair) was present in all the states of aggregation. The compound exists in the stable chair conformation, whereas in the parent silacyclohexane a possible twist form should have more than 15 kJ mol(-1) higher energies than the chair, as derived from various calculations. The wavenumbers of the vibrational modes were calculated in the harmonic and anharmonic approximation employing B3LYP/cc-pVTZ calculations. The 27 A' and 21 A″ fundamentals were assigned on the basis of the calculations, infrared vapour contours, Raman depolarization measurements and infrared and Raman band intensities. An average, relative deviation of 1.5% was found between the observed and the anharmonic wavenumbers for the 48 modes.


Assuntos
Compostos Heterocíclicos com 1 Anel/química , Modelos Químicos , Compostos de Organossilício/química , Cristalização , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho , Análise Espectral Raman/métodos , Vibração
16.
J Phys Chem A ; 118(28): 5279-88, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24949666

RESUMO

Quantum chemical methods were used to investigate the OH initiated atmospheric degradation of methanimine, CH2═NH, the major primary product in the atmospheric photo-oxidation of methylamine, CH3NH2. Energies of stationary points on potential energy surfaces of reaction were calculated using multireference perturbation theory and coupled cluster theory. The results show that hydrogen abstraction dominates over the addition route in the CH2═NH + OH reaction, and that the major primary product is HCN, while HNC and CHONH2 are minor primary products. HNC is found to react with OH exclusively via addition to the carbon atom followed by O-H scission leading to HNCO; N2O is not a product in the atmospheric photo-oxidation of HNC. Additional G4 calculations of the CH2═NH + O3 reaction show that this is too slow to be of importance at atmospheric conditions. Rate coefficients for the CH2═NH + OH and HNC + OH reactions were calculated as a function of temperature and pressure using a master equation model based on the coupled cluster theory results. The rate coefficients for OH reaction with CH2═NH and HNC at 1000 mbar and room temperature are calculated to be 3.0 × 10(-12) and 1.3 × 10(-11) cm(3) molecule(-1) s(-1), respectively. The atmospheric fate of CH2═NH is discussed and a gas phase photo-oxidation mechanism is presented.

17.
J Phys Chem A ; 118(6): 1004-11, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24467689

RESUMO

In continuation of our studies of sulfuric acid H-bonded complexes of atmospheric relevance we report the infrared spectra of the matrix isolated complexes formed between trimethylamine and sulfuric acid. Evidence for proton transfer was anticipated for the present system, as trimethylamine ((CH3)3N) is of strong basic nature. However, the spectra of this system are complicated by the inevitable presence water in the vapor and in the matrix, resulting in matrix layers containing three species capable of forming H-bonded complexes. The complex formed between trimethylamine and sulfuric acid is of ionic character due to proton transfer of the H(+) proton from sulfuric acid to (CH3)3N to form a new N-H bond and the replacement of the intramolecular O-H bond in H2SO4 by a strong intermolecular N-H···O hydrogen bond. The complex is further stabilized by hydration. The skeletal modes show clear bisulfate related bands and are only slightly affected by hydration. The ν(OH) region shows a rich band scheme, best explained by a structure involving (at least) three H2O molecules. A broad spectral feature spanning the 1700-500 cm(-1) is assigned, in analogy to previous studies to a double-well potential quasi-symmetric, Zundel-like, ionic species with a (CH3)3-N···H(+)···N-(CH3)3 configuration. A band in the skeletal S═O stretch spectral region may be assigned to hydrated sulfate as its counterion.

18.
Chem Soc Rev ; 41(19): 6684-704, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22729147

RESUMO

This critical review addresses the atmospheric gas phase and aqueous phase amine chemistry that is relevant to potential emissions from amine-based carbon capture and storage (CCS). The focus is on amine, nitrosamine and nitramine degradation, and nitrosamine and nitramine formation processes. A comparison between the relative importance of the various atmospheric sinks for amines, nitrosamines and nitramines is presented.

19.
J Phys Chem A ; 116(16): 4089-96, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22489577

RESUMO

The environmentally important interaction products of trimethylamine (TMA) and water molecules have been observed by Matrix Isolation Fourier Transform Infrared Spectroscopy (MIS-FTIR). Infrared spectra of solid argon matrix layers, in which both TMA and H(2)O molecules were entrapped as impurities, were analyzed for bands in the ν(O-H) region, not seen in matrix layers containing either of the parent molecules alone. Results were interpreted on the basis of the emergence of several spectral band pairs and their red shifts from the position of the matrix isolated H(2)O monomers as compared to semiempirically scaled frequencies from the B3LYP/aug-cc-pVTZ calculations and empirical correlations with a large body of data on H-bonded complexes. Bands were assigned to a complex cluster of two TMA molecules flanking a closed ring of four H-bonded H(2)O molecules. The formation of this cluster is argued to be formed in the vapor phase (as opposed to being a result of diffusion of the trapped species) and is related to its large stabilization energy (enthalpy) because of strong cooperative effects in its H-bond system.


Assuntos
Metilaminas/química , Teoria Quântica , Água/química , Ligação de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Phys Chem A ; 115(23): 5759-66, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21077594

RESUMO

The atmospherically important interaction products of sulfuric acid and ammonia molecules have been firstly observed by matrix isolation Fourier transform infrared spectroscopy (MIS-FTIR). Infrared spectra of solid argon matrix layers, in which both H(2)SO(4) and NH(3) molecules were entrapped as impurities, were analyzed for bands not seen in matrix layers containing either of the parent molecules alone. Results were interpreted on the basis of spectral changes, experimental conditions, and semiempirically scaled frequencies from the B3LYP/aug-cc-pVTZ and B3LYP/aug-cc-pVQZ calculations. Bands were assigned to complexes of the H(2)SO(4)·NH(3) and H(2)SO(4)·[NH(3)](2) general formulas. They differ significantly: the 1:1 H(2)SO(4)·NH(3) complex is a strongly hydrogen bonded complex, an analogue of the H(2)SO(4)·H(2)O complex, studied previously. For the 1:2 H(2)SO(4)·[NH(3)](2) complex, spectral results indicate an almost complete proton transfer forming a complex of essentially the two ionic moieties HSO(4)(-) and [H(3)N···H···NH(3)](+), an analogue of the [H(2)O···H···OH(2)](+) "Zundel ion".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...