Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(9): 4265-4275, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32022558

RESUMO

Electrocatalysis is a promising tool for utilizing carbon dioxide as a feedstock in the chemical industry. However, controlling the selectivity for different CO2 reduction products remains a major challenge. We report a series of manganese carbonyl complexes with elaborated bipyridine or phenanthroline ligands that can reduce CO2 to either formic acid, if the ligand structure contains strategically positioned tertiary amines, or CO, if the amine groups are absent in the ligand or are placed far from the metal center. The amine-modified complexes are benchmarked to be among the most active catalysts for reducing CO2 to formic acid, with a maximum turnover frequency of up to 5500 s-1 at an overpotential of 630 mV. The conversion even works at overpotentials as low as 300 mV, although through an alternative mechanism. Mechanistically, the formation of a Mn-hydride species aided by in situ protonated amine groups was determined to be a key intermediate by cyclic voltammetry, 1H NMR, DFT calculations, and infrared spectroelectrochemistry.

2.
J Am Chem Soc ; 141(30): 11821-11826, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31310710

RESUMO

A series of 4-membered azametallacycles have been prepared by the oxidative addition of Ni(0) with aziridines. Stoichiometric 13C-labeled carbon monoxide could be efficiently incorporated via Ni-C bond insertion to generate air stable and isolable cyclic Ni-acyl complexes. Upon subjection to a range of C-, N-, O-, and S-nucleophiles, 13C-labeled ß-amino acids and derivatives thereof, as well as ß-aminoketones, could be rapidly accessed. The methodology proved highly adaptable for the synthesis of the antidiabetic drug, sitagliptin, with a single carbon isotope label.

3.
Org Lett ; 21(15): 5775-5778, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31117713

RESUMO

Bench-stable tablets (COtabs) have been developed for the rapid and safe production of carbon monoxide. The tablets can be made in less than 5 min without the use of a glovebox and only require a stock solution of an amine base to liberate a specific quantity of CO in a two-chamber system. The COtabs were tested in five different carbonylation reactions and provided similar yields compared to literature procedures. Finally, a gram-scale reaction was conducted, as well as 13C-isotope labeling of the anticancer drug, olaparib.

4.
Chimia (Aarau) ; 72(9): 606-609, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257735

RESUMO

Carbon monoxide (CO) represents an important C1-building block for the construction of some of the most fundamental chemical functionalities carrying a carbon-oxygen double bond. Transition metal catalysis plays a key role in promoting such transformations. We have earlier shown that the combination of palladium catalysis with CO releasing molecules and the two-chamber reactor, COware, provides a convenient and safe means for performing traditional Pd-catalyzed carbonylative couplings, as well as being a platform for the discovery of new carbonylation reactions. Furthermore, the method can be adapted to 13C- and 14C-isotope labeling, as well as providing for a suitable setting for developing efficient carbonylation reactions with 11CO. Herein, we provide a short overview of our latest findings in this area with emphasis on carbonylative couplings with fluorinated building blocks, but also discuss our efforts to develop viable Ni-catalyzed carbonylations with aliphatic substrates, which can be performed efficiently under low CO partial pressures.

5.
Chemistry ; 24(56): 14946-14949, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30106491

RESUMO

The development of a nickel-mediated aminocarbonylation utilizing NN2 -pincer Ni-complexes, alkylzinc reagents, stoichiometric carbon monoxide and amines is described for the first time, which can be adapted to late-stage carbon-isotope labeling. This work expands the scope of the highly established palladium-promoted version of the reaction, by allowing carbon-sp3 fragments to take part in the three-component reaction. Finally, the results obtained show a remarkable effect of the pincer ligand for the reductive elimination step with the amine, which is followed by 13 C NMR spectroscopy studies.

6.
J Labelled Comp Radiopharm ; 61(13): 949-987, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29858516

RESUMO

Carbon monoxide represents the most important C1-building block for the chemical industry, both for the production of bulk and fine chemicals, but also for synthetic fuels. Yet its toxicity and subsequently its cautious handling have limited its applications in medicinal chemistry research and in particular for the synthesis of pharmaceutically relevant molecules. Recent years have nevertheless witnessed a considerable headway on the development of carbon monoxide surrogates and reactor systems, which provide an ideal setting for performing carbonylation chemistry with stoichiometric and substoichiometric carbon monoxide. Such setups are particularly ideal for the introduction of isotope labels such as carbon-11, carbon-13, and carbon-14 into bioactive compounds. This review summarizes this growing field and examines the large number of carbonylation reactions that can be exploited for the introduction of a carbon isotope.


Assuntos
Isótopos de Carbono/química , Monóxido de Carbono/química , Radioquímica/métodos , Radioisótopos de Carbono/química
7.
Angew Chem Int Ed Engl ; 56(50): 15910-15915, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29076608

RESUMO

A series of crystalline sp3 -sp3 diboron(4) compounds were synthesized and shown to promote the facile reduction of water with dihydrogen formation. The application of these diborons as simple and effective dihydrogen and dideuterium sources was demonstrated by conducting a series of selective reductions of alkynes and alkenes, and hydrogen-deuterium exchange reactions using two-chamber reactors. Finally, as the water reduction reaction generates an intermediate borohydride species, a range of aldehydes and ketones were reduced by using water as the hydride source.

8.
Nat Commun ; 8(1): 489, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887452

RESUMO

Significant efforts have been devoted over the last few years to develop efficient molecular electrocatalysts for the electrochemical reduction of carbon dioxide to carbon monoxide, the latter being an industrially important feedstock for the synthesis of bulk and fine chemicals. Whereas these efforts primarily focus on this formal oxygen abstraction step, there are no reports on the exploitation of the chemistry for scalable applications in carbonylation reactions. Here we describe the design and application of an inexpensive and user-friendly electrochemical set-up combined with the two-chamber technology for performing Pd-catalysed carbonylation reactions including amino- and alkoxycarbonylations, as well as carbonylative Sonogashira and Suzuki couplings with near stoichiometric carbon monoxide. The combined two-reaction process allows for milligram to gram synthesis of pharmaceutically relevant compounds. Moreover, this technology can be adapted to the use of atmospheric carbon dioxide.Electroreduction of CO2 to CO is a potential valorisation pathway of carbon dioxide for fine chemicals production. Here, the authors show a user-friendly device that couples CO2 electroreduction with carbonylation chemistry for up to gram scale synthesis of pharmaceuticals even under atmospheric CO2.

9.
Nat Commun ; 7: 13782, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27981967

RESUMO

A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing 'waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

10.
J Org Chem ; 81(4): 1358-66, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26807594

RESUMO

A three-component coupling protocol has been developed for the generation of 3-oxo-3-(hetero)arylpropanenitriles via a carbonylative palladium-catalyzed α-arylation of tert-butyl 2-cyanoacetates with (hetero)aryl bromides followed by an acid-mediated decarboxylation step. Through the combination of only a stoichiometric loading of carbon monoxide and mild basic reaction conditions such as MgCl2 and dicyclohexylmethylamine for the deprotonation step, an excellent functional group tolerance was ensured for the methodology. Through the use of (13)C-labeled carbon monoxide generated from (13)COgen, the corresponding (13)C-isotopically labeled ß-ketonitriles were obtained, and these products could subsequently be converted into cyanoalkynes and 3-cyanobenzofurans with site specific (13)C-isotope labeling.

11.
Chemistry ; 21(20): 7379-83, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25820027

RESUMO

In this communication, we report a straightforward synthesis of enantiomerically pure 2-alkyl azetidines. The protocol is based on a highly regioselective nickel-catalyzed cross-coupling of aliphatic organozinc reagents with an aziridine that features a tethered thiophenyl group. Activation by methylation transforms the sulfide into an excellent leaving group and triggers the formation of the 2-substituted azetidine core structure by cyclization. In addition, we have expanded this concept to the synthesis of enantiomerically pure, terminal alkyl aziridines. Coupling of a TMS-protected aziridine alcohol, followed by acidic work-up to remove the silyl group, provides 1,2-amino alcohol products that are readily cyclized to aziridines. Both of these sequences display excellent functional group tolerance and deliver the desired azetidine and aziridine products in good to excellent yields.

12.
J Am Chem Soc ; 136(16): 6142-7, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24702475

RESUMO

A protocol for the efficient and selective reduction of carbon dioxide to carbon monoxide has been developed. Remarkably, this oxygen abstraction step can be performed with only the presence of catalytic cesium fluoride and a stoichiometric amount of a disilane in DMSO at room temperature. Rapid reduction of CO2 to CO could be achieved in only 2 h, which was observed by pressure measurements. To quantify the amount of CO produced, the reduction was coupled to an aminocarbonylation reaction using the two-chamber system, COware. The reduction was not limited to a specific disilane, since (Ph2MeSi)2 as well as (PhMe2Si)2 and (Me3Si)3SiH exhibited similar reactivity. Moreover, at a slightly elevated temperature, other fluoride salts were able to efficiently catalyze the CO2 to CO reduction. Employing a nonhygroscopic fluoride source, KHF2, omitted the need for an inert atmosphere. Substituting the disilane with silylborane, (pinacolato)BSiMe2Ph, maintained the high activity of the system, whereas the structurally related bis(pinacolato)diboron could not be activated with this fluoride methodology. Furthermore, this chemistry could be adapted to (13)C-isotope labeling of six pharmaceutically relevant compounds starting from Ba(13)CO3 in a newly developed three-chamber system.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Césio/química , Fluoretos/química , Temperatura , Catálise , Pressão
14.
Chemistry ; 19(52): 17926-38, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24265100

RESUMO

Reaction conditions for the three-component synthesis of aryl 1,3-diketones are reported applying the palladium-catalyzed carbonylative α-arylation of ketones with aryl bromides. The optimal conditions were found by using a catalytic system derived from [Pd(dba)2] (dba=dibenzylideneacetone) as the palladium source and 1,3-bis(diphenylphosphino)propane (DPPP) as the bidentate ligand. These transformations were run in the two-chamber reactor, COware, applying only 1.5 equivalents of carbon monoxide generated from the CO-releasing compound, 9-methylfluorene-9-carbonyl chloride (COgen). The methodology proved adaptable to a wide variety of aryl and heteroaryl bromides leading to a diverse range of aryl 1,3-diketones. A mechanistic investigation of this transformation relying on 31P and 13C NMR spectroscopy was undertaken to determine the possible catalytic pathway. Our results revealed that the combination of [Pd(dba)2] and DPPP was only reactive towards 4-bromoanisole in the presence of the sodium enolate of propiophenone suggesting that a [Pd(dppp)(enolate)] anion was initially generated before the oxidative-addition step. Subsequent CO insertion into an [Pd(Ar)(dppp)(enolate)] species provided the 1,3-diketone. These results indicate that a catalytic cycle, different from the classical carbonylation mechanism proposed by Heck, is operating. To investigate the effect of the dba ligand, the Pd0 precursor, [Pd(η3-1-PhC3H4)(η5-C5H5)], was examined. In the presence of DPPP, and in contrast to [Pd(dba)2], its oxidative addition with 4-bromoanisole occurred smoothly providing the [PdBr(Ar)(dppp)] complex. After treatment with CO, the acyl complex [Pd(CO)Br(Ar)(dppp)] was generated, however, its treatment with the sodium enolate led exclusively to the acylated enol in high yield. Nevertheless, the carbonylative α-arylation of 4-bromoanisole with either catalytic or stoichiometric [Pd(η3-1-PhC3H4)(η5-C5H5)] over a short reaction time, led to the 1,3-diketone product. Because none of the acylated enol was detected, this implied that a similar mechanistic pathway is operating as that observed for the same transformation with [Pd(dba)2] as the Pd source.


Assuntos
Brometos/química , Paládio/química , Catálise , Estrutura Molecular , Oxirredução , Estereoisomerismo
16.
J Org Chem ; 77(14): 6155-65, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22725263

RESUMO

A novel and general approach for (13)C(2)- and (2)H-labeled phenethylamine derivatives has been developed, based on a highly convergent single-step assembly of the carbon skeleton. The efficient incorporation of two carbon-13 isotopes into phenethylamines was accomplished using a palladium-catalyzed double carbonylation of aryl iodides with near stoichiometric carbon monoxide.


Assuntos
Monóxido de Carbono/química , Compostos Organometálicos/química , Paládio/química , Fenetilaminas/síntese química , Isótopos de Carbono , Catálise , Estrutura Molecular , Fenetilaminas/química
17.
Org Lett ; 14(10): 2536-9, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22564004

RESUMO

The direct carbonylative palladium catalyzed synthesis of monoprotected 1,3-ketoaldehydes is reported starting from aryl iodides applying near stoichiometric amounts of carbon monoxide. Besides representing platforms for a variety of heterocyclic structures, these motives serve as viable precursors for the highly relevant aryl methyl ketones. The presented strategy can also be adapted for the facile and efficient incorporation of (13)C-labeled carbon monoxide.


Assuntos
Aldeídos/síntese química , Hidrocarbonetos Iodados/química , Cetonas/síntese química , Paládio/química , Aldeídos/química , Isótopos de Carbono/química , Monóxido de Carbono/análise , Monóxido de Carbono/química , Catálise , Cetonas/química , Estrutura Molecular
18.
Org Lett ; 13(16): 4454-7, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21790124

RESUMO

A simple protocol is reported for the preparation of primary aryl amides under Pd-catalyzed carbonylation chemistry applying a two-chamber system with crystalline and nontransition metal based sources of carbon monoxide and ammonia. The method is suitable for the synthesis of a number of primary amides with good functional group tolerance. Incorporation of (13)CO into the primary amide group was also found to be effective making this approach useful for accessing carbon isotope labeled derivatives.


Assuntos
Amidas/síntese química , Nanoestruturas/química , Paládio/química , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...