Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 14: 110, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26611470

RESUMO

BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose of this study is to develop a proof-of-concept numerical procedure for constructing a simulated flow field that is influenced by both direct PC-MRI measurements and a fluid physics model, thereby taking advantage of both the accuracy of PC-MRI and the high spatial resolution of CFD. The use of the proposed approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution of a generalized Tikhonov regularization, which provides a flow field that satisfies the flow physics equations, while being close enough to the measured PC-MRI velocity profile. The feasibility of the proposed approach is demonstrated on data from the carotid bifurcation of one healthy volunteer, and also from a pulsatile carotid flow phantom. RESULTS: The proposed solver produces flow fields that are in better agreement with direct PC-MRI measurements than CFD alone, and converges faster, while closely satisfying the fluid dynamics equations. For the implementation that provided the best results, the signal-to-error ratio (with respect to the PC-MRI measurements) in the phantom experiment was 6.56 dB higher than that of conventional CFD; in the in vivo experiment, it was 2.15 dB higher. CONCLUSIONS: The proposed approach allows partial or complete measurements to be incorporated into a modified CFD solver, for improving the accuracy of the resulting flow fields estimates. This can be used for reducing scan time, increasing the spatial resolution, and/or denoising the PC-MRI measurements.


Assuntos
Circulação Sanguínea , Simulação por Computador , Hidrodinâmica , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Algoritmos , Humanos , Modelos Biológicos , Imagens de Fantasmas
2.
J Digit Imaging ; 19(2): 112-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16511673

RESUMO

This Technical Note describes a novel modular framework for development and interlaboratory distribution and validation of 3D tractography algorithms based on in vivo diffusion tensor imaging (DTI) measurements. The proposed framework allows individual MRI research centers to benefit from new tractography algorithms developed at other independent centers by "plugging" new tractography modules directly into their own custom DTI software tools, such as existing graphical user interfaces (GUI) for visualizing brain white matter pathways. The proposed framework is based on the Java 3D programming platform, which provides an object-oriented programming (OOP) model and independence of computer hardware configuration and operating system. To demonstrate the utility of the proposed approach, a complete GUI for interactive DTI tractography was developed, along with two separate and interchangeable modules that implement two different tractography algorithms. Although the application discussed here relates to DTI tractography, the programming concepts presented here should be of interest to anyone who wishes to develop platform-independent GUI applications for interactive 3D visualization.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Neuroanatomia/métodos , Software , Interface Usuário-Computador , Humanos , Processamento de Imagem Assistida por Computador , Linguagens de Programação , Integração de Sistemas
3.
Magn Reson Imaging ; 22(9): 1319-23, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15607105

RESUMO

We have investigated the use of two different image coregistration algorithms for identifying local regions of erroneously high fractional anisotropy (FA) as derived from diffusion tensor imaging (DTI) data sets in newborns. The first algorithm uses conventional affine registration of each of the diffusion-weighted images to the unweighted (b = 0) image for each slice, while the second algorithm uses second-order polynomial warping. Similarity between images was determined using the mutual information (MI) criterion, which is the preferred 'cost' criterion for coregistration of images with significantly different image intensity distributions. We have found that subtle differences exist in the FA values resulting from affine and second-order polynomial coregistration and demonstrate that nonlinear distortions introduce artifacts of spatial extent similar to real white matter structures in the newborn subcortex. We show that polynomial coregistration systematically reduces the presence of erroneous regions of high FA and that such artifacts can be identified by visual inspection of FA maps resulting from affine and polynomial coregistrations. Furthermore, we show that nonlinear distortions may be particularly pronounced when acquiring image slices of axial orientation at the height of the nasal cavity. Finally, we show that third-order polynomial MI coregistration (using the images resulting from second-order coregistration as input) has no observable effect on the resulting FA maps.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Algoritmos , Anisotropia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Cavidade Nasal/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...