Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Dermatol Res ; 305(8): 699-704, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23677388

RESUMO

Aquaporins (AQPs) constitute one family of transmembrane proteins facilitating transport of water across cell membranes. Due to their specificity, AQPs have a broad spectrum of physiological functions, and for keratinocytes there are indications that these channel proteins are involved in cell migration and proliferation with consequences for the antimicrobial defense of the skin. AQP3 and AQP10 are aqua-glyceroporins, known to transport glycerol as well as water. AQP3 is the predominant AQP in human skin and has previously been demonstrated in the basal layer of epidermis in normal human skin, but not in stratum corneum (SC). AQP10 has not previously been identified in human skin. Previous studies have demonstrated the presence of AQP3 and AQP10 mRNA in keratinocytes. In this study, our aim was to investigate if these aquaporin proteins were actually present in human SC cells. This can be seen as a first step toward elucidating the possible functional role of AQP3 and AQP10 in SC hydration. Specifically we investigate the presence of AQP3 and AQP10 in vivo in human SC using "minimal-invasive" technique for obtaining SC samples. SC samples were obtained from six healthy volunteers. Western blotting and immunohistochemistry were used to demonstrate the presence of AQP3 as well as AQP10. The presence of AQP3 and AQP10 was verified by Western blotting, allowing for detection of proteins by specific antibodies. Applying immunohistochemistry, cell-like structures in the shape of corneocytes were identified in all samples by AQP3 and AQP10 antibodies. In conclusion, identification of AQP3 and AQP10 protein in SC in an in vivo model is new. Together with the new "minimal-invasive" method for SC collection presented, this opens for new possibilities to study the role of AQPs in relation to function of the skin barrier.


Assuntos
Aquaporina 3/metabolismo , Aquaporinas/metabolismo , Epiderme/metabolismo , Adulto , Aquaporina 3/isolamento & purificação , Aquaporinas/isolamento & purificação , Feminino , Humanos , Imuno-Histoquímica , Queratinócitos/metabolismo , Masculino , Pessoa de Meia-Idade
2.
Plant J ; 45(1): 71-82, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16367955

RESUMO

Serine hydroxymethyltransferase (SHMT) is part of the mitochondrial enzyme complex catalysing the photorespiratory production of serine, ammonium and CO(2) from glycine. Potato plants (Solanum tuberosum cv. Solara) with antisensed SHMT were generated to investigate whether photorespiratory intermediates accumulated during light lead to nocturnal activation of the nitrogen-assimilating enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT). The transformant lines contained 70-90% less SHMT protein, and exhibited a corresponding decrease in mitochondrial SHMT activity. SHMT antisense plants displayed lower photosynthetic capacity and accumulated glycine in light. Glycine was converted to serine in the second half of the light period, while serine, ammonium and glutamine showed an inverse diurnal rhythm and reached highest values in darkness. GS/GOGAT protein levels and activities in the transgenics also reached maximum levels in darkness. The diurnal displacement of NH(4)(+) assimilation was accompanied by a change in the subunit composition of GS(2), but not GS(1). It is concluded that internal accumulation of post-photorespiratory ammonium is leading to nocturnal activation of GS/GOGAT, and that the time shift in ammonia assimilation can constitute part of a strategy to survive photorespiratory impairment.


Assuntos
Ritmo Circadiano , Glicina Hidroximetiltransferase/metabolismo , Oligonucleotídeos Antissenso/genética , Folhas de Planta/metabolismo , Compostos de Amônio Quaternário/metabolismo , Solanum tuberosum/metabolismo , Aminoácidos/biossíntese , Dióxido de Carbono/metabolismo , Escuridão , Glicina Hidroximetiltransferase/genética , Solanum tuberosum/enzimologia , Solanum tuberosum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...