Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593893

RESUMO

Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."


Assuntos
Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/patologia , Envelhecimento Cognitivo , Células Piramidais/patologia , Sinapses/patologia , Animais , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344
2.
J Struct Biol ; 190(1): 56-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25682762

RESUMO

Myelin - the multilayer membrane that envelops axons - is a facilitator of rapid nerve conduction. Oligodendrocytes form CNS myelin; the prevailing hypothesis being that they do it by extending a process that circumnavigates the axon. It is pertinent to ask how myelin is built because oligodendrocyte plasma membrane and myelin are compositionally different. To this end, we examined oligodendrocyte cultures and embryonic avian optic nerves by electron microscopy, immuno-electron microscopy and three-dimensional electron tomography. The results support three novel concepts. Myelin membranes are synthesized as tubules and packaged into "myelinophore organelles" in the oligodendrocyte perikaryon. Myelin membranes are matured in and transported by myelinophore organelles within an oligodendrocyte process. The myelin sheath is generated by myelin membrane fusion inside an oligodendrocyte process. These findings abrogate the dogma of myelin resulting from a wrapping motion of an oligodendrocyte process and open up new avenues in the quest for understanding myelination in health and disease.


Assuntos
Bainha de Mielina/ultraestrutura , Oligodendroglia/ultraestrutura , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Células Cultivadas , Sistema Nervoso Central/citologia , Embrião de Galinha , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Organelas/ultraestrutura , Carneiro Doméstico , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...