Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 15(34): 40343-40354, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590263

RESUMO

This paper reports a robust strategy to catalyze in situ C-H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82-85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C-H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C-H bond activation when coupled with natural enzymes.


Assuntos
Peróxido de Hidrogênio , Peroxidase , Biocatálise , Peroxidases , Peroxidase do Rábano Silvestre , Cobalto , Corantes
3.
Nanoscale ; 14(23): 8332-8341, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35616189

RESUMO

Chemical reactions involving nanoparticles often follow complex processes. In this respect, real-time probing of single nanoparticles under reactive conditions is crucial for uncovering the mechanisms driving the reaction pathway. Here, we have captured in situ the oxidation of single Cu nanoparticles to unravel a sequential competitive activation of different mechanisms at temperatures 50-200 °C. Using environmental scanning transmission electron microscopy, we monitor the evolution of oxide formation with sub-nanometre spatial resolution, and show how the prevalence of oxide island nucleation, Cabrera-Mott, Valensi-Carter and Kirkendall mechanisms under different conditions determines the morphology of the particles. Moreover, using in situ electron energy-loss spectroscopy, we probe the localised surface plasmons of individual particles during oxidation, and with the aid of finite-difference time-domain electrodynamic simulations investigate the signature of each mechanism in their plasmonic response. Our results shed light on the rich and intricate processes involved in the oxidation of nanoparticles, and provide in-depth insight into how these processes govern their morphology and optical response, beneficial for applications in catalysis, sensing, nanomedicine and plasmonics.

4.
J Comput Chem ; 33(23): 1845-53, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22618604

RESUMO

In this article, we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the nuclear magnetic resonance (NMR) indirect nuclear spin-spin coupling constant with respect to an external electric field and play an important role for both chiral discrimination and solvation effects on NMR coupling constants. In this study, we illustrate the effects of one-electron basis sets and electron correlation both at the level of density functional theory as well as second-order polarization propagator approximation for the small molecule hydrogen peroxide, which allowed us to perform calculations with the largest available basis sets optimized for the calculation of NMR coupling constants. We find a systematic but rather slow convergence with the one-electron basis set and that augmentation functions are required. We observe also large and nonsystematic correlation effects with significant differences between the density functional and wave function theory methods.


Assuntos
Peróxido de Hidrogênio/química , Espectroscopia de Ressonância Magnética/normas , Teoria Quântica , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...