Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(12): e202213968, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36625361

RESUMO

Both oxygen vacancies and surface hydroxyls play a crucial role in catalysis. Yet, their relationship is not often explored. Herein, we prepare two series of TiO2 (rutile and P25) with increasing oxygen deficiency and Ti3+ concentration by pulsed laser defect engineering in liquid (PUDEL), and selectively quantify the acidic and basic surface OH by fluoride substitution. As indicated by EPR spectroscopy, the laser-generated Ti3+ exist near the surface of rutile, but appear to be deeper in the bulk for P25. Fluoride substitution shows that extra acidic bridging OH are selectively created on rutile, while the surface OH density remains constant for P25. These observations suggest near-surface Ti3+ are highly related to surface bridging OH, presumably the former increasing the electron density of the bridging oxygen to form more of the latter. We anticipate that fluoride substitution will enable better characterization of surface OH and its correlation with defects in metal oxides.

2.
Sci Total Environ ; 864: 161079, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565888

RESUMO

The stability of graphene structure in sulfur-doped graphene catalyst is demonstrated to be a key aspect during the ozonation process. Enhancing the stability of the sulfur-doped graphene structure is therefore important to improve its catalytic activity during the ozonation process. However, this has remained a challenge so far. Therefore, we adopted a low-energy microwave plasma technique to synthesize a high purity sulfur-doped graphene (S ⎯ Gr) catalyst for the ozonation process. The effect of S ⎯ Gr in the ozonation process was tested using carbamazepine (CBZ; 0.05 mM) as a probe compound. A complete CBZ removal was obtained at an ozone concentration of 0.08 mM while in comparison with single O3, ∼1.5 and 2.5 times decrease in the formation of the two important intermediate transformation products i.e., BQM (1-(2-benzaldehyde) - 4-hydroxy (1H, 3H)-quinazoline-2-one) and BQD (1-(2-benzaldehyde) - (1H, 3H)-quinazoline-2, 4-dione) was observed. Radical scavenging experiments confirmed the formation of HO. The XPS results showed that the activity of S ⎯ Gr towards the formation of HO was positively related to S-bearing carbon atoms at the edge of the graphene structure. Therefore, the addition of S ⎯ Gr is directly linked with the formation of HO, which further contributed to the improved elimination of intermediate transformation products. With a low sulfur loss of 1 %, the microwave plasma synthesized S ⎯ Gr catalyst remained stable during ozonation, implying its feasibility in practical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...