Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822540

RESUMO

Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed "effectors," into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from the Enterobacteriaceae intracellular pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. We identified 54 high-confidence host interactors for the Salmonella effectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for the Citrobacter effectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfH Salmonella protein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCE During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action.

2.
PLoS One ; 8(8): e70753, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950998

RESUMO

Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.


Assuntos
Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Modelos Animais de Doenças , Ilhas Genômicas/genética , Camundongos , Transporte Proteico , Virulência/genética , Fatores de Virulência/genética
3.
J Struct Funct Genomics ; 14(1): 1-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23572252

RESUMO

Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene from Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.


Assuntos
Proteínas de Bactérias/química , Bacteriófagos/genética , Muramidase/química , Salmonella typhimurium/metabolismo , Sequência de Aminoácidos , Bacillus/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Transferência Genética Horizontal , Cinética , Micelas , Micrococcus luteus/efeitos dos fármacos , Dados de Sequência Molecular , Muramidase/genética , Muramidase/metabolismo , Muramidase/farmacologia , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/química , Salmonella typhimurium/genética , Homologia de Sequência de Aminoácidos
4.
J Bacteriol ; 195(10): 2119-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23396917

RESUMO

Salmonella virulence is largely mediated by two type III secretion systems (T3SS) that deliver effector proteins from the bacterium to a host cell; however, the secretion signal is poorly defined. Effector N termini are thought to contain the signal, but they lack homology, possess no identifiable motif, and adopt intrinsically disordered structures. Alternative studies suggest that RNA-encoded signals may also be recognized and that they can be located in the 5' untranslated leader sequence. We began our study by establishing the minimum sequence required for reporter translocation. Untranslated leader sequences predicted from 42 different Salmonella effector proteins were fused to the adenylate cyclase reporter (CyaA'), and each of them was tested for protein injection into J774 macrophages. RNA sequences derived from five effectors, gtgA, cigR, gogB, sseL, and steD, were sufficient for CyaA' translocation into host cells. To determine the mechanism of signal recognition, we identified proteins that bound specifically to the gtgA RNA. One of the unique proteins identified was Hfq. Hfq had no effect upon the translocation of full-length CigR and SteD, but injection of intact GtgA, GogB, and SseL was abolished in an hfq mutant, confirming the importance of Hfq. Our results demonstrated that the Salmonella pathogenicity island 2 (SPI-2) T3SS assembled into a functional apparatus independently of Hfq. Since particular effectors required Hfq for translocation, Hfq-RNA complexes may participate in signal recognition.


Assuntos
Proteínas de Bactérias/metabolismo , Ilhas Genômicas/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Curr Top Microbiol Immunol ; 363: 21-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22886542

RESUMO

Salmonella and Yersinia are two distantly related genera containing species with wide host-range specificity and pathogenic capacity. The metabolic complexity of these organisms facilitates robust lifestyles both outside of and within animal hosts. Using a pathogen-centric systems biology approach, we are combining a multi-omics (transcriptomics, proteomics, metabolomics) strategy to define properties of these pathogens under a variety of conditions including those that mimic the environments encountered during pathogenesis. These high-dimensional omics datasets are being integrated in selected ways to improve genome annotations, discover novel virulence-related factors, and model growth under infectious states. We will review the evolving technological approaches toward understanding complex microbial life through multi-omic measurements and integration, while highlighting some of our most recent successes in this area.


Assuntos
Interações Hospedeiro-Patógeno , Salmonella/patogenicidade , Biologia de Sistemas/métodos , Yersinia/patogenicidade , Animais , Genômica , Humanos , Metabolômica , Proteômica
6.
Infect Immun ; 79(1): 23-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974833

RESUMO

In this review, we provide an overview of the methods employed in four recent studies that described novel methods for computational prediction of secreted effectors from type III and IV secretion systems in Gram-negative bacteria. We present the results of these studies in terms of performance at accurately predicting secreted effectors and similarities found between secretion signals that may reflect biologically relevant features for recognition. We discuss the Web-based tools for secreted effector prediction described in these studies and announce the availability of our tool, the SIEVE server (http://www.sysbep.org/sieve). Finally, we assess the accuracies of the three type III effector prediction methods on a small set of proteins not known prior to the development of these tools that we recently discovered and validated using both experimental and computational approaches. Our comparison shows that all methods use similar approaches and, in general, arrive at similar conclusions. We discuss the possibility of an order-dependent motif in the secretion signal, which was a point of disagreement in the studies. Our results show that there may be classes of effectors in which the signal has a loosely defined motif and others in which secretion is dependent only on compositional biases. Computational prediction of secreted effectors from protein sequences represents an important step toward better understanding the interaction between pathogens and hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Bactérias Gram-Negativas/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bases de Dados de Proteínas , Regulação Bacteriana da Expressão Gênica/fisiologia , Bactérias Gram-Negativas/genética
7.
Infect Immun ; 79(1): 33-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974834

RESUMO

Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis throughout the world. This pathogen has two type III secretion systems (TTSS) encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) that deliver virulence factors (effectors) to the host cell cytoplasm and are required for virulence. While many effectors have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this proteomic study, we identified effector proteins secreted into defined minimal medium designed to induce expression of the SPI-2 TTSS and its effectors. We compared the secretomes of the parent strain to those of strains missing essential (ssaK::cat) or regulatory (ΔssaL) components of the SPI-2 TTSS. We identified 20 known SPI-2 effectors. Excluding the translocon components SseBCD, all SPI-2 effectors were biased for identification in the ΔssaL mutant, substantiating the regulatory role of SsaL in TTS. To identify novel effector proteins, we coupled our secretome data with a machine learning algorithm (SIEVE, SVM-based identification and evaluation of virulence effectors) and selected 12 candidate proteins for further characterization. Using CyaA' reporter fusions, we identified six novel type III effectors and two additional proteins that were secreted into J774 macrophages independently of a TTSS. To assess their roles in virulence, we constructed nonpolar deletions and performed a competitive index analysis from intraperitoneally infected 129/SvJ mice. Six mutants were significantly attenuated for spleen colonization. Our results also suggest that non-type III secretion mechanisms are required for full Salmonella virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Fatores de Virulência/metabolismo , Algoritmos , Animais , Inteligência Artificial , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Camundongos , Camundongos da Linhagem 129 , Mutação , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética
8.
Mol Biosyst ; 6(12): 2448-58, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20877914

RESUMO

Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. The first 20-30 N-terminal residues usually contain the 'secretion signal' that targets effector proteins for translocation, however, a consensus sequence motif has never been discerned. Recent machine-learning approaches, such as support vector machine (SVM)-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structural properties probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The secretion predictions from SIEVE matched signal-CyaA fusion experimental results with J774 macrophages suggesting that the SseJ secretion signal has some sequence order dependence. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with a small predisposition to adopt nascent helical structure only in the presence of structure stabilizing agents such as 1,1,1,3,3,3-hexafluoroisopropanol. Intrinsic disorder may be a universal feature of effector secretion signals as similar conclusions were reached following structural characterization of peptides corresponding to the N-terminal regions of the S. Typhimurium effectors SptP, SopD-2, GtgE, and the Yersinia pestis effector YopH.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Sinais Direcionadores de Proteínas , Salmonella enterica/metabolismo , Toxina Adenilato Ciclase/metabolismo , Algoritmos , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Bioensaio , Dicroísmo Circular , AMP Cíclico/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Propanóis/química , Estrutura Secundária de Proteína , Trifluoretanol/química
9.
Infect Immun ; 73(10): 6260-71, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16177297

RESUMO

A common theme in bacterial pathogenesis is the secretion of bacterial products that modify cellular functions to overcome host defenses. Gram-negative bacterial pathogens use type III secretion systems (TTSSs) to inject effector proteins into host cells. The genes encoding the structural components of the type III secretion apparatus are conserved among bacterial species and can be identified by sequence homology. In contrast, the sequences of secreted effector proteins are less conserved and are therefore difficult to identify. A strategy was developed to identify virulence factors secreted by Salmonella enterica serovar Typhimurium into the host cell cytoplasm. We constructed a transposon, which we refer to as mini-Tn5-cycler, to generate translational fusions between Salmonella chromosomal genes and a fragment of the calmodulin-dependent adenylate cyclase gene derived from Bordetella pertussis (cyaA'). In-frame fusions to bacterial proteins that are secreted into the eukaryotic cell cytoplasm were identified by high levels of cyclic AMP in infected cells. The assay was sufficiently sensitive that a single secreted fusion could be identified among several hundred that were not secreted. This approach identified three new effectors as well as seven that have been previously characterized. A deletion of one of the new effectors, steA (Salmonella translocated effector A), attenuated virulence. In addition, SteA localizes to the trans-Golgi network in both transfected and infected cells. This approach has identified new secreted effector proteins in Salmonella and will likely be useful for other organisms, even those in which genetic manipulation is more difficult.


Assuntos
Proteínas de Bactérias/metabolismo , Genes Bacterianos , Mutagênese Insercional/métodos , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Toxina Adenilato Ciclase/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , AMP Cíclico/metabolismo , Citoplasma/microbiologia , Elementos de DNA Transponíveis , Deleção de Genes , Transporte Proteico , Salmonella typhimurium/metabolismo , Virulência/genética , Fatores de Virulência , Rede trans-Golgi/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...