Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822540

RESUMO

Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed "effectors," into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from the Enterobacteriaceae intracellular pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. We identified 54 high-confidence host interactors for the Salmonella effectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for the Citrobacter effectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfH Salmonella protein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCE During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action.

2.
PLoS One ; 8(8): e70753, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950998

RESUMO

Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.


Assuntos
Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Modelos Animais de Doenças , Ilhas Genômicas/genética , Camundongos , Transporte Proteico , Virulência/genética , Fatores de Virulência/genética
3.
J Struct Funct Genomics ; 14(1): 1-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23572252

RESUMO

Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene from Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.


Assuntos
Proteínas de Bactérias/química , Bacteriófagos/genética , Muramidase/química , Salmonella typhimurium/metabolismo , Sequência de Aminoácidos , Bacillus/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Transferência Genética Horizontal , Cinética , Micelas , Micrococcus luteus/efeitos dos fármacos , Dados de Sequência Molecular , Muramidase/genética , Muramidase/metabolismo , Muramidase/farmacologia , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/química , Salmonella typhimurium/genética , Homologia de Sequência de Aminoácidos
4.
J Bacteriol ; 195(10): 2119-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23396917

RESUMO

Salmonella virulence is largely mediated by two type III secretion systems (T3SS) that deliver effector proteins from the bacterium to a host cell; however, the secretion signal is poorly defined. Effector N termini are thought to contain the signal, but they lack homology, possess no identifiable motif, and adopt intrinsically disordered structures. Alternative studies suggest that RNA-encoded signals may also be recognized and that they can be located in the 5' untranslated leader sequence. We began our study by establishing the minimum sequence required for reporter translocation. Untranslated leader sequences predicted from 42 different Salmonella effector proteins were fused to the adenylate cyclase reporter (CyaA'), and each of them was tested for protein injection into J774 macrophages. RNA sequences derived from five effectors, gtgA, cigR, gogB, sseL, and steD, were sufficient for CyaA' translocation into host cells. To determine the mechanism of signal recognition, we identified proteins that bound specifically to the gtgA RNA. One of the unique proteins identified was Hfq. Hfq had no effect upon the translocation of full-length CigR and SteD, but injection of intact GtgA, GogB, and SseL was abolished in an hfq mutant, confirming the importance of Hfq. Our results demonstrated that the Salmonella pathogenicity island 2 (SPI-2) T3SS assembled into a functional apparatus independently of Hfq. Since particular effectors required Hfq for translocation, Hfq-RNA complexes may participate in signal recognition.


Assuntos
Proteínas de Bactérias/metabolismo , Ilhas Genômicas/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Infect Immun ; 79(1): 33-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974834

RESUMO

Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis throughout the world. This pathogen has two type III secretion systems (TTSS) encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) that deliver virulence factors (effectors) to the host cell cytoplasm and are required for virulence. While many effectors have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this proteomic study, we identified effector proteins secreted into defined minimal medium designed to induce expression of the SPI-2 TTSS and its effectors. We compared the secretomes of the parent strain to those of strains missing essential (ssaK::cat) or regulatory (ΔssaL) components of the SPI-2 TTSS. We identified 20 known SPI-2 effectors. Excluding the translocon components SseBCD, all SPI-2 effectors were biased for identification in the ΔssaL mutant, substantiating the regulatory role of SsaL in TTS. To identify novel effector proteins, we coupled our secretome data with a machine learning algorithm (SIEVE, SVM-based identification and evaluation of virulence effectors) and selected 12 candidate proteins for further characterization. Using CyaA' reporter fusions, we identified six novel type III effectors and two additional proteins that were secreted into J774 macrophages independently of a TTSS. To assess their roles in virulence, we constructed nonpolar deletions and performed a competitive index analysis from intraperitoneally infected 129/SvJ mice. Six mutants were significantly attenuated for spleen colonization. Our results also suggest that non-type III secretion mechanisms are required for full Salmonella virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Fatores de Virulência/metabolismo , Algoritmos , Animais , Inteligência Artificial , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Camundongos , Camundongos da Linhagem 129 , Mutação , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...