Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Solid Earth ; 126(3): e2020JB021024, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33868888

RESUMO

Laboratory studies suggest that seismogenic rupture on faults in carbonate terrains can be explained by a transition from high friction, at low sliding velocities (V), to low friction due to rapid dynamic weakening as seismic slip velocities are approached. However, consensus on the controlling physical processes is lacking. We previously proposed a microphysically based model (the "Chen-Niemeijer-Spiers" [CNS] model) that accounts for the (rate-and-state) frictional behavior of carbonate fault gouges seen at low velocities characteristic of rupture nucleation. In the present study, we extend the CNS model to high velocities (1 mm/s ≤ V ≤ 10 m/s) by introducing multiple grain-scale deformation mechanisms activated by frictional heating. As velocity and hence temperature increase, the model predicts a continuous transition in dominant deformation mechanisms, from frictional granular flow with partial accommodation by plasticity at low velocities and temperatures, to grain boundary sliding with increasing accommodation by solid-state diffusion at high velocities and temperatures. Assuming that slip occurs in a localized shear band, within which grain size decreases with increasing velocity, the model results capture the main mechanical trends seen in high-velocity friction experiments on room-dry calcite-rich rocks, including steady-state and transient aspects, with reasonable quantitative agreement and without the need to invoke thermal decomposition or fluid pressurization effects. The extended CNS model covers the full spectrum of slip velocities from earthquake nucleation to seismic slip rates. Since it is based on realistic fault structure, measurable microstructural state variables, and established deformation mechanisms, it may offer an improved basis for extrapolating lab-derived friction data to natural fault conditions.

2.
J Geophys Res Solid Earth ; 125(11): e2020JB019970, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33381362

RESUMO

A (micro)physical understanding of the transition from frictional sliding to plastic or viscous flow has long been a challenge for earthquake cycle modeling. We have conducted ring-shear deformation experiments on layers of simulated calcite fault gouge under conditions close to the frictional-to-viscous transition previously established in this material. Constant velocity (v) and v-stepping tests were performed, at 550°C, employing slip rates covering almost 6 orders of magnitude (0.001-300 µm/s). Steady-state sliding transitioned from (strong) v-strengthening, flow-like behavior to v-weakening, frictional behavior, at an apparent "critical" velocity (v cr ) of ~0.1 µm/s. Velocity-stepping tests using v < v cr showed "semi-brittle" flow behavior, characterized by high stress sensitivity ("n-value") and a transient response resembling classical frictional deformation. For v ≥ v cr , gouge deformation is localized in a boundary shear band, while for v < v cr , the gouge is well-compacted, displaying a progressively homogeneous structure as the slip rate decreases. Using mechanical data and post-mortem microstructural observations as a basis, we deduced the controlling shear deformation mechanisms and quantitatively reproduced the steady-state shear strength-velocity profile using an existing micromechanical model. The same model also reproduces the observed transient responses to v-steps within both the flow-like and frictional deformation regimes. We suggest that the flow-to-friction transition strongly relies on fault (micro)structure and constitutes a net opening of transient microporosity with increasing shear strain rate at v < v cr , under normal stress-dependent or "semi-brittle" flow conditions. Our findings shed new insights into the microphysics of earthquake rupture nucleation and dynamic propagation in the brittle-to-ductile transition zone.

3.
J Geophys Res Solid Earth ; 125(8): e2019JB018429, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999804

RESUMO

Geodetic observations and large-scale laboratory experiments show that seismic instability is preceded by slow slip within a finite nucleation zone. In laboratory experiments rupture nucleation is studied mostly using bare (rock) interfaces, whereas upper crustal faults are typically filled with gouge. To investigate effects of gouge on rupture nucleation, we performed a biaxial shearing experiment on a 350 mm long saw-cut fault filled with gypsum gouge, at room temperature and a minimum horizontal stress σ 2 = 0.3-5 MPa. The gouge layer was sandwiched between polymethylmethacrylate (PMMA) plates For reference also a fault without gouge was deformed. Strain gauges and Digital Image Correlation were used to monitor the deformation field along the fault zone margins. Stick-slip behavior occurred on both the gouge-filled fault and the PMMA fault. Nucleation of instability on the PMMA fault persistently occurred from one location 2/3 to 3/4 along the fault adjacent to a slow slip zone at the fault end, but nucleation on the gouge-filled fault was more variable, nucleating at the ends and/or at approximately 2/3 along the fault, with precursory slip occurring over a large fraction of the fault. Nucleation correlated to regions of high average fault stress ratio τ/σ n , which was more variable for the gouge-filled fault due to small length scale variations in normal stress caused by heterogeneous gouge compaction. Rupture velocities and slip rates were lower for the gouge-filled fault than for the bare PMMA fault. Stick-slip persisted when σ 2 was lowered and the nucleation zone length increased, expanding from the center to the sample ends before transitioning into instability.

4.
Sci Rep ; 9(1): 9894, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289319

RESUMO

Earthquakes typically exhibit recurrence times that far exceed time-scales attainable in a laboratory setting. To traverse the temporal gap between the laboratory and nature, the slide-hold-slide test is commonly employed as a laboratory analogue for the seismic cycle, from which the time-dependence of fault strength may be assessed. In many studies it is implicitly assumed that all fault restrengthening emanates from an increase in the internal friction coefficient, neglecting contributions from cohesion. By doing so, important information is lost that is relevant for numerical simulations of seismicity on natural faults, as well as for induced seismicity. We conduct slide-hold-slide experiments on granular halite gouge at various normal stresses to assess the time-dependence of the internal coefficient of friction, and of the cohesion, independently of one another. These experiments reveal that both the internal friction coefficient and cohesion increase over time, but that these quantities do not share a common evolution, suggesting different underlying mechanisms.

5.
J Geophys Res Solid Earth ; 123(1): 107-124, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29541574

RESUMO

Intergranular pressure solution creep is an important deformation mechanism in the Earth's crust. The phenomenon has been frequently studied and several analytical models have been proposed that describe its constitutive behavior. These models require assumptions regarding the geometry of the aggregate and the grain size distribution in order to solve for the contact stresses and often neglect shear tractions. Furthermore, analytical models tend to overestimate experimental compaction rates at low porosities, an observation for which the underlying mechanisms remain to be elucidated. Here we present a conceptually simple, 3-D discrete element method (DEM) approach for simulating intergranular pressure solution creep that explicitly models individual grains, relaxing many of the assumptions that are required by analytical models. The DEM model is validated against experiments by direct comparison of macroscopic sample compaction rates. Furthermore, the sensitivity of the overall DEM compaction rate to the grain size and applied stress is tested. The effects of the interparticle friction and of a distributed grain size on macroscopic strain rates are subsequently investigated. Overall, we find that the DEM model is capable of reproducing realistic compaction behavior, and that the strain rates produced by the model are in good agreement with uniaxial compaction experiments. Characteristic features, such as the dependence of the strain rate on grain size and applied stress, as predicted by analytical models, are also observed in the simulations. DEM results show that interparticle friction and a distributed grain size affect the compaction rates by less than half an order of magnitude.

6.
Sci Rep ; 8(1): 4724, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549291

RESUMO

Phyllosilicate-bearing faults are characterized by an anastomosing foliation with intervening hard clasts and are believed to be long-term weak structures. Here, I present results of sliding experiments on gouges of 80 wt% quartz and 20 wt% muscovite, sheared under hydrothermal conditions at constant velocity. The results show that significant strengthening occurs over a narrow range of sliding velocities (0.03-1 µm/s). At the lowest velocity investigated, weakness is achieved after a considerable sliding distance of over 20 mm with friction reaching a value of 0.3. Microstructural observations and the application of existing models point to the operation of frictional-viscous flow (FVF), through the serial operation of frictional sliding over a weak foliation and pressure solution of intervening clasts, resulting in low frictional strength and pronounced velocity-strengthening. At higher velocities, grain size reduction becomes dominant in a localized zone, which results in disruption of the foliation and the cessation of the FVF mechanism. In natural settings, earthquakes originating elsewhere on the fault would be rapidly arrested when encountering a foliated part of the fault deforming via FVF. Furthermore, pulses of elevated slip velocity would lead to grain size reduction which would destroy the foliation and cause a long-term strengthening of the fault.

7.
J Geophys Res Solid Earth ; 121(2): 624-647, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27610290

RESUMO

The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate-and-state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity-strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...