Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Osteoarthritis Cartilage ; 28(8): 1133-1144, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32437969

RESUMO

OBJECTIVE: To develop and validate a machine learning (ML) approach for automatic three-dimensional (3D) histopathological grading of osteochondral samples imaged with contrast-enhanced micro-computed tomography (CEµCT). DESIGN: A total of 79 osteochondral cores from 24 total knee arthroplasty patients and two asymptomatic donors were imaged using CEµCT with phosphotungstic acid -staining. Volumes-of-interest (VOI) in surface (SZ), deep (DZ) and calcified (CZ) zones were extracted depth-wise and subjected to dimensionally reduced Local Binary Pattern -textural feature analysis. Regularized linear and logistic regression (LR) models were trained zone-wise against the manually assessed semi-quantitative histopathological CEµCT grades (diameter = 2 mm samples). Models were validated using nested leave-one-out cross-validation and an independent test set (4 mm samples). The performance was primarily assessed using Mean Squared Error (MSE) and Average Precision (AP, confidence intervals are given in square brackets). RESULTS: Highest performance on cross-validation was observed for SZ, both on linear regression (MSE = 0.49, 0.69 and 0.71 for SZ, DZ and CZ, respectively) and LR (AP = 0.9 [0.77-0.99], 0.46 [0.28-0.67] and 0.65 [0.41-0.85] for SZ, DZ and CZ, respectively). The test set evaluations yielded increased MSE on all zones. For LR, the performance was also best for the SZ (AP = 0.85 [0.73-0.93], 0.82 [0.70-0.92] and 0.8 [0.67-0.9], for SZ, DZ and CZ, respectively). CONCLUSION: We present the first ML-based automatic 3D histopathological osteoarthritis (OA) grading method which also adequately perform on grading unseen data, especially in SZ. After further development, the method could potentially be applied by OA researchers since the grading software and all source codes are publicly available.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Aprendizado de Máquina , Osteoartrite do Joelho/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X , Artroplastia do Joelho , Cartilagem Articular/patologia , Meios de Contraste , Fêmur/patologia , Humanos , Imageamento Tridimensional , Osteoartrite do Joelho/patologia , Índice de Gravidade de Doença , Tíbia/patologia
2.
Ann Biomed Eng ; 48(2): 595-605, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31583552

RESUMO

The aim of this study was to quantify sub-resolution trabecular bone morphometrics, which are also related to osteoarthritis (OA), from clinical resolution cone beam computed tomography (CBCT). Samples (n = 53) were harvested from human tibiae (N = 4) and femora (N = 7). Grey-level co-occurrence matrix (GLCM) texture and histogram-based parameters were calculated from CBCT imaged trabecular bone data, and compared with the morphometric parameters quantified from micro-computed tomography. As a reference for OA severity, histological sections were subjected to OARSI histopathological grading. GLCM and histogram parameters were correlated to bone morphometrics and OARSI individually. Furthermore, a statistical model of combined GLCM/histogram parameters was generated to estimate the bone morphometrics. Several individual histogram and GLCM parameters had strong associations with various bone morphometrics (|r| > 0.7). The most prominent correlation was observed between the histogram mean and bone volume fraction (r = 0.907). The statistical model combining GLCM and histogram-parameters resulted in even better association with bone volume fraction determined from CBCT data (adjusted R2 change = 0.047). Histopathology showed mainly moderate associations with bone morphometrics (|r| > 0.4). In conclusion, we demonstrated that GLCM- and histogram-based parameters from CBCT imaged trabecular bone (ex vivo) are associated with sub-resolution morphometrics. Our results suggest that sub-resolution morphometrics can be estimated from clinical CBCT images, associations becoming even stronger when combining histogram and GLCM-based parameters.


Assuntos
Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Osteoartrite/diagnóstico por imagem , Microtomografia por Raio-X , Feminino , Humanos , Masculino
3.
Osteoarthritis Cartilage ; 27(1): 172-180, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287395

RESUMO

OBJECTIVE: Our aim is to establish methods for quantifying morphometric properties of calcified cartilage (CC) from micro-computed tomography (µCT). Furthermore, we evaluated the feasibility of these methods in investigating relationships between osteoarthritis (OA), tidemark surface morphology and open subchondral channels (OSCCs). METHOD: Samples (n = 15) used in this study were harvested from human lateral tibial plateau (n = 8). Conventional roughness and parameters assessing local 3-dimensional (3D) surface variations were used to quantify the surface morphology of the CC. Subchondral channel properties (percentage, density, size) were also calculated. As a reference, histological sections were evaluated using Histopathological osteoarthritis grading (OARSI) and thickness of CC and subchondral bone (SCB) was quantified. RESULTS: OARSI grade correlated with a decrease in local 3D variations of the tidemark surface (amount of different surface patterns (rs = -0.600, P = 0.018), entropy of patterns (EP) (rs = -0.648, P = 0.018), homogeneity index (HI) (rs = 0.555, P = 0.032)) and tidemark roughness (TMR) (rs = -0.579, P = 0.024). Amount of different patterns (ADP) and EP associated with channel area fraction (CAF) (rp = 0.876, P < 0.0001; rp = 0.665, P = 0.007, respectively) and channel density (CD) (rp = 0.680, P = 0.011; rp = 0.582, P = 0.023, respectively). TMR was associated with CAF (rp = 0.926, P < 0.0001) and average channel size (rp = 0.574, P = 0.025). CC topography differed statistically significantly in early OA vs healthy samples. CONCLUSION: We introduced a µ-CT image method to quantify 3D CC topography and perforations through CC. CC topography was associated with OARSI grade and OSCC properties; this suggests that the established methods can detect topographical changes in tidemark and CC perforations associated with OA.


Assuntos
Calcinose/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Idoso , Cadáver , Calcinose/etiologia , Calcinose/patologia , Cartilagem Articular/patologia , Humanos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/patologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Índice de Gravidade de Doença , Microtomografia por Raio-X/métodos
4.
Osteoarthritis Cartilage ; 26(8): 1118-1126, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29802974

RESUMO

OBJECTIVE: The aims of this study were: to 1) develop a novel sample processing protocol to visualize human articular cartilage (AC) chondrons using micro-computed tomography (µCT), 2) develop and validate an algorithm to quantify the chondron morphology in 3D, and 3) compare the differences in chondron morphology between intact and osteoarthritic AC. METHOD: The developed protocol is based on the dehydration of samples with hexamethyldisilazane (HMDS), followed by imaging with a desktop µCT. Chondron density and depth, as well as volume and sphericity, were calculated in 3D with a custom-made and validated algorithm employing semi-automatic chondron selection and segmentation. The quantitative parameters were analyzed at three AC depth zones (zone 1: 0-10%; zone 2: 10-40%; zone 3: 40-100%) and grouped by the OARSI histological grades (OARSI grades 0-1.0, n = 6; OARSI grades 3.0-3.5, n = 6). RESULTS: After semi-automatic chondron selection and segmentation, 1510 chondrons were approved for 3D morphometric analyses. The chondrons especially in the deeper tissue (zones 2 and 3) were significantly larger (P < 0.001) and less spherical (P < 0.001), respectively, in the OARSI grade 3-3.5 group compared to the OARSI grade 0-1.0 group. No statistically significant difference in chondron density between the OARSI grade groups was observed at different depths. CONCLUSION: We have developed a novel sample processing protocol for chondron imaging in 3D, as well as a high-throughput algorithm to semi-automatically quantify chondron/chondrocyte 3D morphology in AC. Our results also suggest that 3D chondron morphology is affected by the progression of osteoarthritis (OA).


Assuntos
Cartilagem Articular/diagnóstico por imagem , Condrócitos/patologia , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Adulto , Cartilagem Articular/patologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia
5.
Osteoarthritis Cartilage ; 25(10): 1680-1689, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28606558

RESUMO

OBJECTIVE: Histopathological grading of osteochondral (OC) tissue is widely used in osteoarthritis (OA) research, and it is relatively common in post-surgery in vitro diagnostics. However, relying on thin tissue section, this approach includes a number of limitations, such as: (1) destructiveness, (2) sample processing artefacts, (3) 2D section does not represent spatial 3D structure and composition of the tissue, and (4) the final outcome is subjective. To overcome these limitations, we recently developed a contrast-enhanced µCT (CEµCT) imaging technique to visualize the collagenous extracellular matrix (ECM) of articular cartilage (AC). In the present study, we demonstrate that histopathological scoring of OC tissue from CEµCT is feasible. Moreover, we establish a new, semi-quantitative OA µCT grading system for OC tissue. RESULTS: Pathological features were clearly visualized in AC and subchondral bone (SB) with µCT and verified with histology, as demonstrated with image atlases. Comparison of histopathological grades (OARSI or severity (0-3)) across the characterization approaches, CEµCT and histology, excellent (0.92, 95% CI = [0.84, 0.96], n = 30) or fair (0.50, 95% CI = [0.16, 0.74], n = 27) intra-class correlations (ICC), respectively. A new µCT grading system was successfully established which achieved an excellent cross-method (µCT vs histology) reader-to-reader intra-class correlation (0.78, 95% CI = [0.58, 0.89], n = 27). CONCLUSIONS: We demonstrated that histopathological information relevant to OA can reliably be obtained from CEµCT images. This new grading system could be used as a reference for 3D imaging and analysis techniques intended for volumetric evaluation of OA pathology in research and clinical applications.


Assuntos
Cartilagem Articular/patologia , Osteoartrite do Joelho/patologia , Idoso , Idoso de 80 Anos ou mais , Artroplastia do Joelho , Calcinose/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Meios de Contraste , Matriz Extracelular/patologia , Estudos de Viabilidade , Humanos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Índice de Gravidade de Doença , Microtomografia por Raio-X/métodos
6.
Osteoarthritis Cartilage ; 23(9): 1613-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26003951

RESUMO

OBJECTIVE: Collagen distribution within articular cartilage (AC) is typically evaluated from histological sections, e.g., using collagen staining and light microscopy (LM). Unfortunately, all techniques based on histological sections are time-consuming, destructive, and without extraordinary effort, limited to two dimensions. This study investigates whether phosphotungstic acid (PTA) and phosphomolybdic acid (PMA), two collagen-specific markers and X-ray absorbers, could (1) produce contrast for AC X-ray imaging or (2) be used to detect collagen distribution within AC. METHOD: We labeled equine AC samples with PTA or PMA and imaged them with micro-computed tomography (micro-CT) at pre-defined time points 0, 18, 36, 54, 72, 90, 180, 270 h during staining. The micro-CT image intensity was compared with collagen distributions obtained with a reference technique, i.e., Fourier-transform infrared imaging (FTIRI). The labeling time and contrast agent producing highest association (Pearson correlation, Bland-Altman analysis) between FTIRI collagen distribution and micro-CT -determined PTA distribution was selected for human AC. RESULTS: Both, PTA and PMA labeling permitted visualization of AC features using micro-CT in non-calcified cartilage. After labeling the samples for 36 h in PTA, the spatial distribution of X-ray attenuation correlated highly with the collagen distribution determined by FTIRI in both equine (mean ± S.D. of the Pearson correlation coefficients, r = 0.96 ± 0.03, n = 12) and human AC (r = 0.82 ± 0.15, n = 4). CONCLUSIONS: PTA-induced X-ray attenuation is a potential marker for non-destructive detection of AC collagen distributions in 3D. This approach opens new possibilities in development of non-destructive 3D histopathological techniques for characterization of OA.


Assuntos
Cartilagem Articular/química , Colágeno/análise , Microtomografia por Raio-X/métodos , Idoso , Animais , Meios de Contraste , Cavalos , Humanos , Masculino , Pessoa de Meia-Idade , Molibdênio , Osteoartrite/metabolismo , Ácidos Fosfóricos , Ácido Fosfotúngstico , Distribuição Tecidual
7.
Osteoarthritis Cartilage ; 22(11): 1784-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25106678

RESUMO

Osteoarthritis (OA) is a widespread musculoskeletal disease that reduces quality of life and for which there is no cure. The treatment of OA is challenging since cartilage impedes the local and systemic delivery of therapeutic compounds (TCs). This review identifies high-intensity ultrasound (HIU) as a non-contact technique to modify articular cartilage and subchondral bone. HIU enables new approaches to overcome challenges associated with drug delivery to cartilage and new non-invasive approaches for the treatment of joint disease. Specifically, HIU has the potential to facilitate targeted drug delivery and release deep within cartilage, to repair soft tissue damage, and to physically alter tissue structures including cartilage and bone. The localized, non-invasive ultrasonic delivery of TCs to articular cartilage and subchondral bone appears to be a promising technique in the immediate future.


Assuntos
Sistemas de Liberação de Medicamentos/estatística & dados numéricos , Osteoartrite/terapia , Terapia por Ultrassom/estatística & dados numéricos , Cartilagem Articular , Humanos
8.
Eur Radiol ; 22(2): 411-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21901565

RESUMO

OBJECTIVE: The purpose of this prospective multicenter study was to assess the safety and technical feasibility of volumetric Magnetic Resonance-guided High Intensity Focused Ultrasound (MR-HIFU) ablation for treatment of patients with symptomatic uterine fibroids. METHODS: Thirty-three patients with 36 fibroids were treated with volumetric MR-HIFU ablation. Treatment capability and technical feasibility were assessed by comparison of the Non-Perfused Volumes (NPVs) with MR thermal dose predicted treatment volumes. Safety was determined by evaluation of complications or adverse events and unintended lesions. Secondary endpoints were pain and discomfort scores, recovery time and length of hospital stay. RESULTS: The mean NPV calculated as a percentage of the total fibroid volume was 21.7%. Correlation between the predicted treatment volumes and NPVs was found to be very strong, with a correlation coefficient r of 0.87. All patients tolerated the treatment well and were treated on an outpatient basis. No serious adverse events were reported and recovery time to normal activities was 2.3 ± 1.8 days. CONCLUSION: This prospective multicenter study proved that volumetric MR-HIFU is safe and technically feasible for the treatment of symptomatic uterine fibroids. KEY POINTS: • Magnetic-resonance-guided high intensity focused ultrasound allows non-invasive treatment of uterine fibroids. • Volumetric feedback ablation is a novel technology that allows larger treatment volumes • MR-guided ultrasound ablation of uterine fibroids appears safe using volumetric feedback.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Leiomioma/diagnóstico por imagem , Leiomioma/patologia , Leiomioma/terapia , Imagem por Ressonância Magnética Intervencionista/métodos , Imageamento por Ressonância Magnética/métodos , Terapia por Ultrassom/métodos , Neoplasias Uterinas/diagnóstico por imagem , Neoplasias Uterinas/patologia , Neoplasias Uterinas/terapia , Adolescente , Adulto , Desenho de Equipamento , Europa (Continente) , Feminino , Humanos , Tempo de Internação , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Ultrassom , Ultrassonografia
9.
Ultrasound Med Biol ; 35(9): 1546-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19560251

RESUMO

Quantitative ultrasound imaging (QUI) can be used to evaluate the integrity of articular cartilage and for diagnosing the early signs of osteoarthritis (OA). In this study, we applied a minimally invasive ultrasound imaging technique and investigated its ability to detect superficial degeneration of bovine knee articular cartilage. Intact (n=13), collagenase-digested (n=6) and mechanically degraded (n=7) osteochondral samples (dia.=25 mm) and custom-made phantoms with different degrees of surface roughness (n=8) were imaged using a high-frequency (40 MHz) QUI system. For each sample and phantom, the ultrasound reflection coefficient (R), integrated reflection coefficient (IRC) and ultrasound roughness index (URI) were determined. Furthermore, to evaluate the clinical applicability of intra-articular ultrasound (IAUS) in diagnostics, one intact bovine knee joint was investigated ex vivo using a simulated arthroscopic approach. Differences in the surface characteristics of the phantoms were detected by monitoring changes in the reflection and surface roughness parameters. Both mechanically- and enzymatically-induced degradation were sensitively diagnosed by decreased (p<0.05) reflection (R and IRC) at the cartilage surface. Furthermore, mechanical degradation was detected in the increased (p<0.05) surface roughness (URI). The intra-articular investigation of a bovine knee joint suggested that the IAUS technique may enable minimally invasive, straightforward diagnostics of the degenerative status of the articular surfaces. We conclude that quantitative IAUS imaging can be used for detecting collagen disruption and increased roughness of the articular surface. This quantitative in vivo ultrasound technique could have great clinical value in the diagnostics of joint diseases.


Assuntos
Artrite Experimental/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Bovinos , Diagnóstico Precoce , Estudos de Viabilidade , Interpretação de Imagem Assistida por Computador/métodos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Propriedades de Superfície , Ultrassonografia
10.
Ultrasound Med Biol ; 34(1): 155-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17900796

RESUMO

Quantitative ultrasound imaging (QUI) is a promising preclinical method for detecting early osteoarthrotic (OA) changes in articular cartilage. The aim of this study was to compare time-domain, frequency-domain and wavelet transform (WT) QUI parameters in terms of their performance in revealing degenerative changes in cartilage in vitro. Mankin score and Cartilage Quality Index (CQI) were used as a reference for quantifying cartilage degeneration. Intact (n = 11, Mankin score = 0) and spontaneously degenerated (n = 21, Mankin score = 1-10, mean = 4) osteochondral samples (diameter 19 mm) from bovine patellae, prepared and scanned with an ultrasound instrument in our earlier study, were further analyzed. Ultrasound reflection coefficient (R), integrated reflection coefficient (IRC) and ultrasound roughness index (URI) for cartilage surfaces were obtained from our earlier study. In the present study, maximum magnitude (MM) and echo duration (ED) for the cartilage surface were determined from the WT analysis. All ultrasound (US) parameters were capable of distinguishing intact and degenerated cartilage groups (p < 0.01, Mann-Whitney U test). Significant correlations were established between all QUI parameters and CQI or Mankin score (p < 0.01, Spearman's correlation test). The receiver operating characteristic (ROC) analysis indicated that the simple time-domain parameters (R and URI) were diagnostically as sensitive and specific as the more complex frequency-domain (IRC) or WT (MM, ED) parameters. Although QUI shows significant potential for OA diagnostics, complex signal processing techniques may provide only limited additional benefits for diagnostic performance compared with simple time-domain methods. However, certain technical challenges must be met before any of these methods can be used clinically.


Assuntos
Doenças das Cartilagens/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem , Animais , Interpretação de Imagem Assistida por Computador/métodos , Patela/diagnóstico por imagem , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Sus scrofa , Ultrassonografia
11.
Eur Cell Mater ; 13: 46-55; discussion 55, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17407053

RESUMO

In order efficiently to target therapies intending to stop or reverse degenerative processes of articular cartilage, it would be crucial to diagnose osteoarthritis (OA) earlier and more sensitively than is possible with the existing clinical methods. Unfortunately, current clinical methods for OA diagnostics are insensitive for detecting the early degenerative changes, e.g., arising from collagen network damage or proteoglycan depletion. We have recently investigated several novel quantitative biophysical methods, including ultrasound indentation, quantitative ultrasound techniques and magnetic resonance imaging, for diagnosing the degenerative changes of articular cartilage, typical for OA. In this study, the combined results of these novel diagnostic methods were compared with histological (Mankin score, MS), compositional (proteoglycan, collagen and water content) and mechanical (dynamic and equilibrium moduli) reference measurements of the same bovine cartilage samples. Receiver operating characteristics (ROC) analysis was conducted to judge the diagnostic performance of each technique. Indentation and ultrasound techniques provided the most sensitive measures to differentiate samples of intact appearance (MS=0) from early (13) degeneration. Furthermore, these techniques were good predictors of tissue composition and mechanical properties. The specificity and sensitivity analyses revealed that the mechano-acoustic methods, when further developed for in vivo use, may provide more sensitive probes for OA diagnostics than the prevailing qualitative X-ray and arthroscopic techniques. Noninvasive quantitative MRI measurements showed slightly lower diagnostic performance than mechano-acoustic techniques. The compared methods could possibly also be used for the quantitative monitoring of success of cartilage repair.


Assuntos
Doenças das Cartilagens/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Osteoartrite/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Água Corporal/metabolismo , Doenças das Cartilagens/patologia , Doenças das Cartilagens/fisiopatologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Bovinos , Colágeno/análise , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Imageamento por Ressonância Magnética/tendências , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Valor Preditivo dos Testes , Proteoglicanas/análise , Proteoglicanas/metabolismo , Regeneração/fisiologia , Estresse Mecânico , Resistência à Tração/fisiologia , Cicatrização/fisiologia
12.
Biorheology ; 39(1-2): 161-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12082279

RESUMO

Osteoarthrosis is the most important joint disease that threatens health of the musculoskeletal system of elderly people. Today, there is a need for sensitive, quantitative diagnostic methods for successful and early diagnosis of the disorder. In the present study, we aimed at evaluating the applicability of ultrasound for quantitative assessment of cartilage structure and properties. Bovine articular cartilage was investigated both in vitro and in situ using high frequency ultrasound. Cartilage samples were also tested mechanically in vitro to reveal relationships between acoustic and mechanical parameters of the tissue. The collagen organization and proteoglycan content of cartilage samples were mapped, using quantitative polarized light microscopy and digital densitometry, respectively, to reveal their effect on the acoustic properties of tissue. The high frequency pulse-echo ultrasound (20-30 MHz) technique proved to be sensitive in detecting the degeneration of the superficial collagen-rich cartilage zone. In addition, ultrasound was found to be a potential tool for measuring cartilage thickness. When the results from biomechanical indentation measurements and ultrasound measurements of normal and enzymatically degraded articular cartilage were combined, collagen or proteoglycan degradation in the tissue could be sensitively and specifically differentiated from each other. To conclude, high frequency ultrasound is a useful tool for evaluation of the quality of superficial articular cartilage as well as for the measurement of cartilage thickness. Therefore, ultrasound appears to be a valuable supplement to the mechanical measurements of articular cartilage stiffness.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/fisiologia , Osteoartrite/diagnóstico por imagem , Ultrassonografia Doppler de Pulso , Animais , Cartilagem Articular/metabolismo , Bovinos , Colágeno/metabolismo , Proteoglicanas/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...