Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(24): 9790-9798, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829167

RESUMO

Quantum mechanics (QM)-driven 1H iterative functionalized spin analysis produces HifSA profiles, which encode the complete 1H spin parameters ("nuclear genotype") of analytes of interest. HifSA profiles enable the establishment of digital reference standards (dRS) that are portable, FAIR (findable - accessible - interoperable - reusable), and fit for the purpose of quantitative 1H NMR (qHNMR) analysis at any magnetic field. This approach enhances the sustainability of analytical standards. Moreover, the analyte-specific complete chemical shift and J-coupling information in HifSA-based dRS enable computational quantitation of substances in mixtures via QM-total-line-shape fitting (QM-qHNMR). We present the proof of concept for HifSA-based dRS by resolving the highly overlapping NMR resonances in the experimental spectra ("nuclear phenotypes") of the diastereomeric mixture of (2RS, 4RS)- and (2RS, 4SR)-difenoconazole (DFZ), a widely used antifouling food additive. The underlying 1H spin parameters are highly conserved in various solvents, are robust against variation in measurement temperature, and work across a wide range of magnetic fields. QM-qHNMR analysis of DFZ samples at 80, 400, 600, and 800 MHz showed high congruence with metrological reference values. Furthermore, this study introduces QM-qHNMR combined with chiral shift reagents for the analysis of all four DFZ stereoisomers: (2R, 4R)-, (2S, 4S)-, (2R, 4S)-, and (2S, 4R)-DFZ to perform chiral qHNMR measurements.


Assuntos
Campos Magnéticos , Espectroscopia de Ressonância Magnética , Teoria Quântica , Padrões de Referência , Espectroscopia de Ressonância Magnética/métodos , Triazóis/química , Triazóis/análise
2.
J Pharm Biomed Anal ; 214: 114709, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35339885

RESUMO

The ICH guidelines recommend reporting thresholds for regular impurities in drug substances at the level of 0.05% or 0.03% (w/w) depending on the maximum daily intake. Therefore, any instrumental method of analysis applicable to the impurity analysis should be able to detect and quantify the analytes at those levels. This investigation was designed to verify the suitability of 1H NMR spectroscopy for the detection of impurities, as a first step in the process before attempting quantification. In order to minimize demand on equipment, this study employed a 400 MHz instrument for structural confirmation and signal assignments of choline (1) and O-(2-hydroxyethyl)choline (2), a known impurity. The limit of detection (LOD) of 2 in 10 mg of 1 was established as 0.01% on a 400 MHz instrument and 2% on a 60 MHz (benchtop) NMR spectrometer. Thus, impurities for which quantification is required are readily detected at 400 MHz or above. These results are in contrast to the widespread belief that 1H NMR sensitivity is insufficient for pharmaceutical impurity analysis. The choice of solvent was recognized as a critical parameter for 1H NMR LOD analysis. Furthermore, publicly available NMR raw data (HMDB) proved to be valuable for unveiling the otherwise cryptic information hidden in complex signal patterns via 1H NMR iterative Full Spin Analysis. Finally, the study uncovered the less noticed, yet characteristic, 14N-1H coupling in the -N+(CH3)3 groups, adding strong arguments for the Raw NMR Data Initiative. Collectively, the data prove that the analytical capabilities of high-field NMR easily fulfill the ICH requirements for detection of impurity in the presence of an actual substance of interest which makes it a step closer to achieving regulatory standards.


Assuntos
Colina , Contaminação de Medicamentos , Cromatografia Líquida de Alta Pressão/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas
3.
Anal Chem ; 93(36): 12162-12169, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34473490

RESUMO

The goal of the qNMR Summit is to take stock of the status quo and the recent developments in qNMR research and applications in a timely and accurate manner. It provides a platform for both advanced and novice qNMR practitioners to receive a well-rounded update and discuss potential qNMR-related applications and collaborations. For over a decade, scientists from academia, industry, nonprofit institutions, and governmental bodies have focused on the standardization of qNMR methodology, as well as its metrological and pharmacopeial utility. This paper reviews key content of qNMR Summits 1.0 to 4.0 and puts into perspective the outcomes and available transcripts of the October 2019 Summit 5.0, with attendees from the United States, Canada, Japan, Korea, and several European countries. Summit presentations focused on qNMR methodology in the pharmaceutical industry, advanced quantitation algorithms, and promising developments.


Assuntos
Tecnologia , Canadá , Japão , Padrões de Referência , Estados Unidos
4.
J Nat Prod ; 84(3): 836-845, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33625215

RESUMO

The present study demonstrates the relationship between conventional and quantum mechanical (QM) NMR spectroscopic analyses, shown here to assist in building a convincingly orthogonal platform for the solution and documentation of demanding structures. Kaempferol-3-O-robinoside-7-O-glucoside, a bisdesmosidic flavonol triglycoside and botanical marker for the aerial parts of Withania somnifera, served as an exemplary case. As demonstrated, QM-based 1H iterative full spin analysis (HiFSA) advances the understanding of both individual nuclear resonance spin patterns and the entire 1H NMR spectrum of a molecule and establishes structurally determinant, numerical HiFSA profiles. The combination of HiFSA with regular 1D 1H NMR spectra allows for simplified yet specific identification tests via comparison of high-quality experimental with QM-calculated spectra. HiFSA accounts for all features encountered in 1H NMR spectra: nonlinear high-order effects, complex multiplets, and their usually overlapped signals. As HiFSA replicates spectrum patterns from field-independent parameters with high accuracy, this methodology can be ported to low-field NMR instruments (40-100 MHz). With its reliance on experimental NMR evidence, the QM approach builds up confidence in structural characterization and potentially reduces identity analyses to simple 1D 1H NMR experiments. This approach may lead to efficient implementation of conclusive identification tests in pharmacopeial and regulatory analyses: from simple organics to complex natural products.


Assuntos
Glicosídeos/análise , Espectroscopia de Ressonância Magnética/normas , Withania/química , Flavonóis/análise , Quempferóis/análise , Monossacarídeos/análise , Componentes Aéreos da Planta/química
5.
J Pharm Biomed Anal ; 192: 113601, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33049645

RESUMO

Issues related to pharmaceutical quality are arising at an alarming rate. Pharmaceutical quality concerns both the Active Pharmaceutical Ingredients (APIs) and the Finished Drug Product/ Formulation. Recently, there has been a significant increase in the number of reports of harmful impurities in marketed drug formulations. Impurities range from solvents, reactants, adulterants, and catalysts to synthetic byproducts. Quality concerns in commercial preparations may also arise due to shelf life stability. Furthermore, a number of falsified and substandard drug cases have been reported. Most of the techniques which are currently in place can, at best, detect the impurities, but cannot identify them unless they are already known and can be compared to a standard. On the other hand, 1H NMR spectroscopy detects all the hydrogen containing species, typically provides information to elucidate structures partially or even completely, and through its absolute quantitative capabilities even can detect the presence hydrogen-free species indirectly. The structural properties that produce 1H NMR signals as characteristic representations of a given molecule are the chemical shifts (δ in ppm) and coupling constants (J in Hz). Along with the line widths (ω1/2 in Hz), these parameters are bound to both the molecule and the NMR experimental conditions by quantum mechanical (QM) principles. This means that the 1H NMR spectra of APIs can be precisely calculated and compared to the experimental data. This review explains how 1H NMR spectroscopy coupled with Full Spin Analysis can contribute towards the quality control of pharmaceuticals by improving structural dereplication and achieving simultaneous quantification of both APIs and their contaminants.


Assuntos
Imageamento por Ressonância Magnética , Preparações Farmacêuticas , Hidrogênio , Espectroscopia de Ressonância Magnética , Controle de Qualidade
6.
J Med Chem ; 63(21): 12137-12155, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32804502

RESUMO

This Perspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labeled health products and CBD-associated health claims lacks a rigorous scientific foundation. CBD's reputation as a cure-all puts it in the same class as other "natural" panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the "natural" label. Literature evidence associates CBD with certain semiubiquitous, broadly screened, primarily plant-based substances of undocumented purity that interfere with bioassays and have a low likelihood of becoming therapeutic agents. Widespread health challenges and pandemic crises such as SARS-CoV-2 create circumstances under which scientists must be particularly vigilant about healing claims that lack solid foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a therapeutic agent.


Assuntos
Canabidiol/farmacologia , Animais , Canabidiol/farmacocinética , Canabidiol/uso terapêutico , Canabidiol/toxicidade , Química Farmacêutica , Ensaios Clínicos como Assunto , Humanos , Efeito Placebo
7.
J Nat Prod ; 83(6): 1950-1959, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32463230

RESUMO

NMR- and MS-guided metabolomic mining for new phytoconstituents from a widely used dietary supplement, Rhodiola rosea, yielded two new (+)-myrtenol glycosides, 1 and 2, and two new cuminol glycosides, 3 and 4, along with three known analogues, 5-7. The structures of the new compounds were determined by extensive spectroscopic data analysis. Quantum mechanics-driven 1H iterative full spin analysis (QM-HiFSA) decoded the spatial arrangement of the methyl groups in 1 and 2, as well as other features not recognizable by conventional methods, including higher order spin-coupling effects. Expanding applied HiFSA methodology to monoterpene glycosides advances the toolbox for stereochemical assignments, facilitates their structural dereplication, and provides a more definitive reference point for future phytochemical and biological studies of R. rosea as a resilience botanical. Application of a new NMR data analysis software package, CT, for QM-based iteration of NMR spectra is also discussed.


Assuntos
Monoterpenos/química , Rhodiola/química , Glicosídeos/química , Hidrólise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Teoria Quântica
8.
J Pharm Biomed Anal ; 178: 112915, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671336

RESUMO

Whereas generic, LC-based pharmaceutical control quality procedures depend largely on the detection mode and can be particularly 'blind' to certain impurities, NMR is a more versatile and, thus, often more judicious detector. While adulteration presents ever-evolving challenges for the analysis of active pharmaceutical ingredients (APIs) and finished products sold in the worldwide (online) marketplace, research chemicals are usually trusted rather than being considered flawed or even adulterated. This report shows how NMR analysis uncovered the unanticipated presence of substantial amounts of mannitol (20 and 43% w/w) as undeclared constituent in two custom synthetic peptides, DR and DRVYI, that were sourced commercially. Quantitative 1H NMR (qHNMR) readily detected the contaminant, even on a 60 MHz benchtop instrument, and quantified the highly polar and UV-transparent adulterant. Quantum-mechanical 1H iterative Full Spin Analysis (HiFSA) not only achieved unambiguous identification of both the mannitol and the peptides, but also confirmed the quantitative results. The cases show that experimental verification supersedes trust in both pharmaceutical and research QC. They also highlight the promising utility of both established high-field and recently re-evolving low-field benchtop qHNMR. The unanticipated findings remind manufacturers and researchers alike about the advantages of including/performing NMR and qNMR with routine CofA documentation and/or verification of research grade chemicals. Especially when done jointly, this can greatly improve confidence in research and help streamline the pharmaceutical QC toolbox.


Assuntos
Peptídeos/química , Preparações Farmacêuticas/química , Contaminação de Medicamentos , Imageamento por Ressonância Magnética/métodos , Controle de Qualidade
9.
J Org Chem ; 84(6): 3055-3073, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30793905

RESUMO

Ensuring identity, purity, and reproducibility are equally essential during synthetic chemistry, drug discovery, and for pharmaceutical product safety. Many peptidic APIs are large molecules that require considerable effort for integrity assurance. This study builds on quantum mechanical 1H iterative Full Spin Analysis (HiFSA) to establish NMR peptide sequencing methodology that overcomes the intrinsic limitations of principal compendial methods in identifying small structural changes or minor impurities that affect effectiveness and safety. HiFSA sequencing yields definitive identity and purity information concurrently, allowing for API quality assurance and control (QA/QC). Achieving full peptide analysis via NMR building blocks, the process lends itself to both research and commercial applications as 1D 1H NMR (HNMR) is the most sensitive and basic NMR experiment. The generated HiFSA profiles are independent of instrument or software tools and work at any magnetic field strength. Pairing with absolute or 100% qHNMR enables quantification of mixtures and/or determination of peptide conformer populations. Demonstration of the methodology uses single amino acids (AAs) and peptides of increasing size, including the octapeptide, angiotensin II, and the nonapeptide, oxytocin. The feasibility of HiFSA coupled with automated NMR and qHNMR for use in QC/QA efforts is established through case-based examples and recommended procedures.


Assuntos
Peptídeos/química , Teoria Quântica , Análise de Sequência de Proteína , Peptídeos/farmacologia , Análise de Componente Principal , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Controle de Qualidade
10.
Anal Chim Acta ; 1049: 161-169, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30612647

RESUMO

Forensic laboratories commonly receive new psychoactive substances such as fentanyl analogues and other synthetic opioids that are difficult to identify. Slight changes to chemical structures, e.g. shifting the position of functional groups such as methyl groups or halogens on the aromatic ring, may not be distinguished using traditional methods. NMR is a powerful tool used to elucidate distinctive structural information needed to differentiate regioisomers. However, the cost, size, and cryogen maintenance of superconducting NMR spectrometers can be impractical for some forensic laboratories. Recent studies have shown potential applications of low-field NMR as an alternative in forensic drug analysis. These benchtop, semi-portable instruments are less costly, have a smaller footprint, do not use cryogens, and require little maintenance. In this study, we show that 65 fentanyl and related substances, including various types of positional isomers, were readily differentiated using low-field (62 MHz) 1H NMR spectroscopy. In addition, the use of quantum mechanical spin system analysis was investigated for the purposes of translating experimentally observed high-field 1H spectra to lower field strengths. Spin system analysis of 600 MHz NMR spectra was conducted on a subset (15) of the reference materials analyzed. The results were used to calculate 62 MHz spectra for comparison purposes with the experimental spectra. This was successfully demonstrated, showing that field-strength independent 1H NMR spectral libraries are feasible and can facilitate reference material data dissemination across forensic drug laboratories.


Assuntos
Analgésicos Opioides/análise , Fentanila/análogos & derivados , Fentanila/análise , Drogas Ilícitas/análise , Analgésicos Opioides/química , Fentanila/química , Ciências Forenses/métodos , Drogas Ilícitas/química , Isomerismo , Espectroscopia de Prótons por Ressonância Magnética/métodos
11.
Nat Prod Rep ; 36(1): 35-107, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003207

RESUMO

Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.


Assuntos
Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Reprodutibilidade dos Testes
13.
J Nat Prod ; 80(8): 2252-2262, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28771358

RESUMO

The dichloromethane extract of the roots of Jatropha dioica afforded riolozatrione (1) and a C-6 epimer of riolozatrione, 6-epi-riolozatrione (2), as a new structure and only the second reported riolozane diterpenoid. The two known diterpenoids jatrophatrione (3) and citlalitrione (4) were also isolated and characterized. Both epimers 1 and 2 are genuine plant constituents, with 2 likely being the biosynthesis precursor of 1 due to the tendency for the quantitative transformation of 2 into 1 under base catalysis. The structural characterization and distinction of the stereoisomers utilized 1H iterative full-spin analysis, yielding complete J-correlation maps that were represented as quantum interaction and linkage tables. The absolute configuration of compounds 1-4 was established by means of vibrational circular dichroism and via X-ray diffraction analysis for 1, 2, and 4. Additionally, the cytotoxic and antiherpetic in vitro activities of the isolates were evaluated.


Assuntos
Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Jatropha/química , Diterpenos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Raízes de Plantas , Difração de Raios X
14.
J Nat Prod ; 80(3): 634-647, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28067513

RESUMO

Chemical standardization, along with morphological and DNA analysis ensures the authenticity and advances the integrity evaluation of botanical preparations. Achievement of a more comprehensive, metabolomic standardization requires simultaneous quantitation of multiple marker compounds. Employing quantitative 1H NMR (qHNMR), this study determined the total isoflavone content (TIfCo; 34.5-36.5% w/w) via multimarker standardization and assessed the stability of a 10-year-old isoflavone-enriched red clover extract (RCE). Eleven markers (nine isoflavones, two flavonols) were targeted simultaneously, and outcomes were compared with LC-based standardization. Two advanced quantitative measures in qHNMR were applied to derive quantities from complex and/or overlapping resonances: a quantum mechanical (QM) method (QM-qHNMR) that employs 1H iterative full spin analysis, and a non-QM method that uses linear peak fitting algorithms (PF-qHNMR). A 10 min UHPLC-UV method provided auxiliary orthogonal quantitation. This is the first systematic evaluation of QM and non-QM deconvolution as qHNMR quantitation measures. It demonstrates that QM-qHNMR can account successfully for the complexity of 1H NMR spectra of individual analytes and how QM-qHNMR can be built for mixtures such as botanical extracts. The contents of the main bioactive markers were in good agreement with earlier HPLC-UV results, demonstrating the chemical stability of the RCE. QM-qHNMR advances chemical standardization by its inherent QM accuracy and the use of universal calibrants, avoiding the impractical need for identical reference materials.


Assuntos
Isoflavonas/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Trifolium/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Padrões de Referência
15.
J Org Chem ; 81(3): 878-89, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26812443

RESUMO

The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of "structural correctness" depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D (1)H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D (1)H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by (1)H iterative full spin analysis (HiFSA). Fully characterized 1D (1)H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication.


Assuntos
Compostos Bicíclicos com Pontes/química , Deutério/química , Espectroscopia de Ressonância Magnética , Sesquiterpenos/química , Cristalografia por Raios X , Estrutura Molecular , Prótons
16.
J Org Chem ; 80(15): 7495-507, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26214362

RESUMO

The ability of certain oligomeric proanthocyanidins (OPACs) to enhance the biomechanical properties of dentin involves collagen cross-linking of the 1.3-4.5 nm wide space via protein-polyphenol interactions. A systematic interdisciplinary search for the bioactive principles of pine bark has yielded the trimeric PAC, ent-epicatechin-(4ß→8)-epicatechin-(2ß→O→7,4ß→8)-catechin (3), representing the hitherto most potent single chemical entity capable of enhancing dentin stiffness. Building the case from two congeneric PAC dimers, a detailed structural analysis decoded the stereochemistry, spatial arrangement, and chemical properties of three dentin biomodifiers. Quantum-mechanics-driven (1)H iterative full spin analysis (QM-HiFSA) of NMR spectra distinguished previously unrecognized details such as higher order J coupling and provided valuable information about 3D structure. Detection and quantification of H/D-exchange effects by QM-HiFSA identified C-8 and C-6 as (re)active sites, explain preferences in biosynthetic linkage, and suggest their involvement in dentin cross-linking activity. Mapping of these molecular properties underscored the significance of high δ precision in both (1)H and (13)C NMR spectroscopy. Occurring at low- to subppb levels, these newly characterized chemical shift differences in ppb are small but diagnostic measures of dynamic processes inherent to the OPAC pharmacophores and can help augment our understanding of nanometer-scale intermolecular interactions in biomodified dentin macromolecules.


Assuntos
Catequina/química , Dentina/química , Substâncias Macromoleculares/química , Polifenóis/química , Proantocianidinas/química , Fenômenos Bioquímicos , Espectroscopia de Ressonância Magnética , Estereoisomerismo
17.
J Nat Prod ; 77(6): 1473-87, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24895010

RESUMO

The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain (1)H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1-1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen ((1)H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms.


Assuntos
Cianobactérias/química , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Estrutura Molecular , Peso Molecular
18.
J Chem Inf Model ; 54(3): 810-7, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24593659

RESUMO

A data driven approach for small molecule J-coupling prediction is presented. The method is targeted for use as part of an automatic spectrum analysis, therefore emphasizing prediction coverage, maintainability, and speed in the design. The database search involves encoding the coupling path atom types into hash codes, which are used to retrieve the matching coupling constant entries from the database. The fast hash dictionary search is followed by a k Nearest Neighbors regression to resolve the substituent and conformational dependencies, parametrized with atomic charges, torsion angles, and steric bulk.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Bibliotecas de Moléculas Pequenas/química , Simulação por Computador , Modelos Moleculares , Software
19.
J Chem Inf Model ; 54(2): 419-30, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24455975

RESUMO

A fast 3D/4D structure-sensitive procedure was developed and assessed for the chemical shift prediction of protons bonded to sp3carbons, which poses the maybe greatest challenge in the NMR spectral parameter prediction. The LPNC (Linear Prediction with Nonlinear Corrections) approach combines three well-established multivariate methods viz. the principal component regression (PCR), the random forest (RF) algorithm, and the k nearest neighbors (kNN) method. The role of RF is to find nonlinear corrections for the PCR predicted shifts, while kNN is used to take full advantage of similar chemical environments. Two basic molecular models were also compared and discussed: in the MC model the descriptors are computed from an ensemble of the conformers found by conformational search based on Metropolis Monte Carlo (MMC) simulation; in the 4D model the conformational space was further expanded to the fourth dimension (time) by adding molecular dynamics to the MC conformers. An illustrative case study about the application and interpretation of the 4D prediction for a conformationally flexible structure, scopolamine, is described in detail.

20.
J Org Chem ; 78(19): 9963-8, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24007197

RESUMO

The characteristic signals observed in NMR spectra encode essential information on the structure of small molecules. However, extracting all of this information from complex signal patterns is not trivial. This report demonstrates how computer-aided spectral analysis enables the complete interpretation of 1D (1)H NMR data. The effectiveness of this approach is illustrated with a set of organic molecules, for which replicas of their (1)H NMR spectra were generated. The potential impact of this methodology on organic chemistry research is discussed.


Assuntos
Lisina/análise , Espectroscopia de Ressonância Magnética/métodos , Química Orgânica , Simulação por Computador , Galactitol/química , Ligação de Hidrogênio , Lisina/química , Estrutura Molecular , Análise de Componente Principal , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...