Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1356, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355701

RESUMO

Many material properties are governed by dislocations and their interactions. The reconstruction of the three-dimensional structure of a dislocation network so far is mainly achieved by tomographic tilt series with high angular ranges, which is experimentally challenging and additionally puts constraints on possible specimen geometries. Here, we show a way to reveal the three dimensional location of dislocations and simultaneously classify their type from single 4D scanning transmission electron microscopy measurements. The dislocation's strain field causes inter-band scattering between the electron's Bloch waves within the crystal. This scattering in turn results in characteristic interference patterns with sufficient information to identify the dislocations type and depth in beam direction by comparison with multi-beam calculations. We expect the presented measurement principle will lead to fully automated methods for reconstruction of the three dimensional strain fields from such measurements with a wide range of applications in material and physical sciences and engineering.

2.
Ultramicroscopy ; 206: 112824, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31401353

RESUMO

The interference gating is a novel method for robust time-resolved electron holographic measurements by directly switching the interference. Here, a new arrangement is presented in which a biprism in the condenser aperture as a fast electric phase shifter is used to control the interference pattern. High-frequency stimulation of the electric phase shifter in the gigahertz range are performed and observed via electron holography, proving the feasibility of interference gating in the upper picosecond range. Despite the bandwidth limitation of 180 MHz of the current signal generator, a time resolution of 100 ns is achieved through forward correction of the control signal. With this time resolution, it is already possible to measure the transient response of the biasing holder system. Our method paves the way towards a closer look on fast dynamic processes with high temporal and spatial resolution.

3.
Nano Lett ; 18(8): 4777-4784, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30004712

RESUMO

The nondestructive characterization of nanoscale devices, such as those based on semiconductor nanowires, in terms of functional potentials is crucial for correlating device properties with their morphological/materials features, as well as for precisely tuning and optimizing their growth process. Electron holographic tomography (EHT) has been used in the past to reconstruct the total potential distribution in three-dimension but hitherto lacked a quantitative approach to separate potential variations due to chemical composition changes (mean inner potential, MIP) and space charges. In this Letter, we combine and correlate EHT and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography on an individual ⟨111⟩ oriented GaAs-AlGaAs core-multishell nanowire (NW). We obtain excellent agreement between both methods in terms of the determined Al concentration within the AlGaAs shell, as well as thickness variations of the few nanometer thin GaAs shell acting as quantum well tube. Subtracting the MIP determined from the STEM tomogram, enables us to observe functional potentials at the NW surfaces and at the Au-NW interface, both ascribed to surface/interface pinning of the semiconductor Fermi level.

4.
ACS Appl Mater Interfaces ; 8(40): 26948-26955, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27642767

RESUMO

The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

5.
Sci Rep ; 6: 22709, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940260

RESUMO

The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

6.
ACS Appl Mater Interfaces ; 8(3): 2017-26, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26709534

RESUMO

Dislocation networks are one of the most principle sources deteriorating the performances of devices based on lattice-mismatched heteroepitaxial systems. We demonstrate here a technique enabling fully coherent germanium (Ge) islands selectively grown on nanotip-patterned Si(001) substrates. The silicon (Si)-tip-patterned substrate, fabricated by complementary metal oxide semiconductor compatible nanotechnology, features ∼50-nm-wide Si areas emerging from a SiO2 matrix and arranged in an ordered lattice. Molecular beam epitaxy growths result in Ge nanoislands with high selectivity and having homogeneous shape and size. The ∼850 °C growth temperature required for ensuring selective growth has been shown to lead to the formation of Ge islands of high crystalline quality without extensive Si intermixing (with 91 atom % Ge). Nanotip-patterned wafers result in geometric, kinetic-diffusion-barrier intermixing hindrance, confining the major intermixing to the pedestal region of Ge islands, where kinetic diffusion barriers are, however, high. Theoretical calculations suggest that the thin Si/Ge layer at the interface plays, nevertheless, a significant role in realizing our fully coherent Ge nanoislands free from extended defects especially dislocations. Single-layer graphene/Ge/Si-tip Schottky junctions were fabricated, and thanks to the absence of extended defects in Ge islands, they demonstrate high-performance photodetection characteristics with responsivity of ∼45 mA W(-1) and an Ion/Ioff ratio of ∼10(3).

7.
Ultramicroscopy ; 147: 33-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24997449

RESUMO

The optimum biprism position as suggested by Lichte (Ultramicroscopy 64 (1996) 79 [10]) was implemented into a state-of-the-art transmission electron microscope. For a setup optimized for atomic resolution holograms with a width of 30nm and a fringe spacing of 30pm, we investigated the practical improvements on hologram quality. The setup is additionally supplemented by a second biprism as suggested by Harada et al. (Applied Physics Letters 84 (2004) 3229 [12]). In order to estimate the possibilities and limitations of the double biprism setup, geometric optics arguments lead to calculation of the exploitable shadow width, necessary for strong reduction of biprism-induced artefacts. Additionally, we used the double biprism setup to estimate the biprism vibration, yielding the most stable imaging conditions with lowest overall fringe contrast damping. Electron holograms of GaN demonstrate the good match between experiment and simulation, also as a consequence of the improved stability.

8.
Ultramicroscopy ; 144: 32-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24821224

RESUMO

Off-axis electron holography provides access to the phase of the elastically scattered wave in a transmission electron microscope at scales ranging from several hundreds of nanometres down to 0.1nm. In many cases the reconstructed phase shift is directly proportional to projected electric and magnetic potentials rendering electron holography a useful and established characterisation method for materials science. However, quantitative interpretation of experimental phase shifts requires quantitative knowledge about the noise, which has been previously established for some limiting cases only. Here, we present a general noise transfer formalism for off-axis electron holography allowing to compute the covariance (noise) of reconstructed amplitude and phase from characteristic detector functions and general properties of the reconstruction process. Experimentally, we verify the presented noise transfer formulas for two different cameras with and without objects within the errors given by the experimental noise determination.

9.
Ultramicroscopy ; 115: 68-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22465093

RESUMO

A new generalized linear transfer theory describing the signal and noise transfer in image detectors is presented, which can be applied to calculate the pixelwise first and second statistical moment of arbitrary experimental images including correlation between pixels. Similar to the existing notion of a point spread function describing the transfer of the first statistical moment (the average), a noise spread function is introduced to characterize the spatially resolved transfer and generation of noise (second central moment, covariance). It is also shown that previously used noise characteristics like the noise power spectrum and detection quantum efficiency, derived from plainly illuminated images, contain only partial information of the complete noise transfer.

10.
Ultramicroscopy ; 115: 78-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22424716

RESUMO

A novel generalized linear transfer theory describing the signal and noise transfer in image detectors has been developed in Part I (Niermann, this issue, [1]) of this paper. Similar to the existing notion of a point spread function (PSF) describing the transfer of the first statistical moment (the average), a noise spread function (NSF) was introduced to characterize the spatially resolved transfer of noise (central second moment, covariance). Following the theoretic results developed in Part I (Niermann, this issue, [1]), a new experimental method based on single spot illumination has been developed and applied to measure 2D point and 4D noise spread functions of CCD cameras used in TEM. A dedicated oversampling method has been used to suppress aliasing in the measured quantities. We analyze the 4D noise spread with respect to electronic and photonic noise contributions.

11.
Microsc Microanal ; 12(6): 476-82, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19830939

RESUMO

Structural features like defects or heterointerfaces in crystals or amorphous phases give rise to different local patterns in high-resolution electron micrographs or object wave functions. Pattern recognition techniques can be used to identify these typical patterns that constitute the image itself, as was already demonstrated for compositional changes in isostructural heterostructures, where the patterns within unit cells of the lattice were analyzed. To extend such analyses to more complex materials, we examined patterns in small circular areas centered on intensity maxima of the image. Nonsupervised clustering, namely, Ward's clustering method, was applied to these patterns. In two examples, a highly defective ZnMnTe layer on GaAs and a tunnel magneto resistance device, we demonstrate how typical patterns are identified by this method and how these results can be used for a further investigation of the microstructural properties of the sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...