Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 279: 116449, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759532

RESUMO

Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B1 (AFB1) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB1 degradation takes place, either enzymatic and/or non-enzymatic. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. The main objective of this study was therefore to investigate whether biotransformation of AFB1 occurred and whether it is caused by insect-enzymes and/or by microbial enzymes of MOs in the feed substrate. In order to investigate this, sterile and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL). The AFB1 concentration was determined via LC-MS/MS analyses and recorded over time. Approximately 50% of the initially present AFB1 was recovered in the treatment involving BSFL, which was comparable to the treatment without BSFL (60%). Similar patterns were observed for HFL. The molar mass balance of AFB1 for the sterile feed substrates with BSFL and HFL was 73% and 78%, respectively. We could not establish whether non-enzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB1 as well as in conversion of AFB1 into aflatoxin P1 and aflatoxicol, respectively. In contrast, HFL did not seem to contribute to AFB1 degradation. The obtained results contribute to our understanding of aflatoxin metabolism by different insect species. This information is crucial for assessing the safety of feeding fly larvae with feed substrates contaminated with AFB1 with the purpose of subsequent use as animal feed.


Assuntos
Aflatoxina B1 , Ração Animal , Biotransformação , Dípteros , Moscas Domésticas , Larva , Animais , Aflatoxina B1/metabolismo , Moscas Domésticas/metabolismo , Ração Animal/análise , Espectrometria de Massas em Tandem
2.
Mycotoxin Res ; 37(4): 279-295, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34618340

RESUMO

Novel protein sources for animal feed are needed, and the use of insects as feed ingredient is explored. The insect production sector offers opportunities for a circular and sustainable approach to feed production by upgrading waste or side streams into high-quality proteins. However, potential food or feed safety issues should be studied in advance. Mycotoxins, such as aflatoxin B1, are natural contaminants commonly found in agricultural crops and have proven to be detrimental to the agricultural industry, livestock, and human health. This systematic review aims to provide a comprehensive overview of the published evidence on effects of mycotoxin exposure on insect growth and survival, mycotoxin accumulation within the insect body, and metabolization of various mycotoxins by insects. The review includes 54 scientific articles published in the past 55 years, in total covering 32 insect species. The main findings are the following: (1) Insects of the order Coleoptera show lower mortality after exposure to aflatoxin B1 when compared to Lepidoptera and Diptera; (2) effects of mycotoxins on larval growth and survival are less detrimental in later larval stages; (3) accumulation of mycotoxins was low in most insect species; (4) mycotoxins are metabolized within the insect body, the degree of which depends on the particular mycotoxin and insect species; (5) cytochrome P450s are the main family of enzymes involved in biotransformation of mycotoxins in some insect species. Results of this review support an optimistic outlook for the use of mycotoxin-contaminated waste streams as substrate for insect rearing.


Assuntos
Micotoxinas , Ração Animal/análise , Animais , Biotransformação , Contaminação de Alimentos/análise , Humanos , Insetos/metabolismo , Larva/metabolismo , Micotoxinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...