Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(7): 2675-2692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600764

RESUMO

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.


Assuntos
Gleiquênias , Lactonas , Simbiose , Animais , Lactonas/metabolismo , Gleiquênias/fisiologia , Gleiquênias/microbiologia , Gleiquênias/efeitos dos fármacos , Dípteros/fisiologia , Glicosilação , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/genética , Nostoc/fisiologia , Nostoc/genética , Nostoc/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
2.
ACS Synth Biol ; 13(3): 901-912, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445989

RESUMO

In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.


Assuntos
Anabaena , Cianobactérias , Humanos , RNA Guia de Sistemas CRISPR-Cas , RNA , Plasmídeos/genética , Anabaena/genética , Cianobactérias/genética , DNA , Escherichia coli/genética , Elementos de DNA Transponíveis/genética
3.
Ecotoxicology ; 29(10): 1750-1761, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893335

RESUMO

Mercury concentrations in Lake Champlain fish increased (2011-2017) for the first time in more than two decades. The increase, however, was not consistent among species or throughout the lake. Mercury concentrations in smallmouth bass and yellow perch from the three Main Lake segments increased significantly while concentrations in the eastern portions of the lake (Northeast Arm and Malletts Bay) remained unchanged or decreased; mercury concentrations in white perch remained unchanged. Factors examined to explain the increase included: atmospheric deposition, lake temperature, chlorophyll-a, fishery dynamics, lake flooding and loading of total suspended solids (TSS). This paper examines how each factor has changed between study periods and the spatial variability associated with the change. We hypothesize fishery dynamics, flooding and TSS loading may be partially responsible for the increase in fish mercury. Both growth efficiency and biomass of fish suggest mercury concentrations would increase in the Main Lake segments and decrease in the eastern portion of the lake. Additionally, two extreme climate events in 2011 resulted in extensive flooding and a four-fold increase in annual TSS loading, both potentially increasing biotic mercury with the impact varying spatially throughout the lake. Changes to the fishery and disturbance caused by extreme climatic events have increased biotic mercury and the processes responsible need further study to identify possible future scenarios in order to better protect human and wildlife health.


Assuntos
Monitoramento Ambiental , Pesqueiros , Peixes/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Bass , Biomassa , Humanos , Lagos/química , Percas
4.
Sci Data ; 5: 180059, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29633989

RESUMO

Concurrent regional and global environmental changes are affecting freshwater ecosystems. Decadal-scale data on lake ecosystems that can describe processes affected by these changes are important as multiple stressors often interact to alter the trajectory of key ecological phenomena in complex ways. Due to the practical challenges associated with long-term data collections, the majority of existing long-term data sets focus on only a small number of lakes or few response variables. Here we present physical, chemical, and biological data from 28 lakes in the Adirondack Mountains of northern New York State. These data span the period from 1994-2012 and harmonize multiple open and as-yet unpublished data sources. The dataset creation is reproducible and transparent; R code and all original files used to create the dataset are provided in an appendix. This dataset will be useful for examining ecological change in lakes undergoing multiple stressors.

5.
Environ Monit Assess ; 188(11): 636, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27783344

RESUMO

In 1990, the US Congress amended the Clean Air Act (CAA) to reduce regional-scale ecosystem degradation from SO x and NO x emissions which have been responsible for acid deposition in regions such as the Adirondack Mountains of New York State. An ecosystem assessment project was conducted from 1994 to 2012 by the Darrin Fresh Water Institute to determine the effect of these emission reduction policies on aquatic systems. The project investigated water chemistry and biota in 30 Adirondack lakes and ponded waters. Although regulatory changes made in response to the 1990 CAA amendments resulted in a reduction of acid deposition within the Adirondacks, the ecosystem response to these reductions is complicated. A statistical analysis of SO4, pH, Al, and DOC data collected during this project demonstrates positive change in response to decreased deposition. The changes in water chemistry also have lowered the risk of Al toxicity to brook trout (Salvelinus fontinalis [Mitchill]), which allowed the re-introduction of this species to Brooktrout Lake from which it had been extirpated. However, pH and labile aluminum (Alim) fluctuate and are not strongly correlated to changes in acid deposition. As such, toxicity to S. fontinalis also is cyclic and provides rationale for the difficulties inherent in re-establishing resident populations in impacted aquatic environments. Overall, aquatic ecosystems of the Adirondacks show a positive response to reduced deposition driven by changes in environmental policy, but the response is more complex and indicates an ecosystem-wide interaction between aquatic and watershed components of the ecosystem.


Assuntos
Chuva Ácida , Alumínio/análise , Lagos , Lagoas , Poluentes Químicos da Água/análise , Poluição do Ar/prevenção & controle , Alumínio/toxicidade , Animais , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , New York , Medição de Risco , Sulfatos/análise , Truta , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Technol ; 49(5): 2665-74, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25621941

RESUMO

The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality.


Assuntos
Ácidos/efeitos adversos , Recuperação e Remediação Ambiental/métodos , Lagos/química , Truta , Poluição Química da Água/efeitos adversos , Animais , Cadeia Alimentar , New York , Dióxido de Enxofre , Poluição Química da Água/prevenção & controle
7.
Ecotoxicol Environ Saf ; 102: 100-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509077

RESUMO

The effect of lead accumulation on photopigment production, mineral nutrition, and Anabaena vegetative cell size and heterocyst formation in Azolla caroliniana was investigated. Plants were exposed to 0, 1, 5, 10, and 20 mg L(-1) lead acetate for ten days. Lead accumulation increased when plants were treated with higher lead concentrations. Results revealed a statistically significant decline in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoids in 5, 10, and 20 mg Pb L(-1) treatment groups as compared to plants with 0 or 1 mg Pb L(-1) treatments. No statistically significant change in anthocyanin production was observed. Calcium, magnesium, and zinc concentrations in plants decreased in increasing treatment groups, whereas sodium and potassium concentrations increased. Nitrogen and carbon were also found to decrease in plant tissue. Anabaena vegetative cells decreased in size and heterocyst frequency declined rapidly in a Pb dose-dependent manner. These results indicate that, while A. caroliniana removes lead from aqueous solution, the heavy metal causes physiological and biochemical changes by impairing photosynthesis, changing mineral nutrition, and impeding the growth and formation of heterocysts of the symbiotic cyanobacteria that live within leaf cavities of the fronds.


Assuntos
Anabaena/efeitos dos fármacos , Anabaena/fisiologia , Gleiquênias/efeitos dos fármacos , Gleiquênias/microbiologia , Compostos Organometálicos/metabolismo , Compostos Organometálicos/toxicidade , Simbiose , Carotenoides/análise , Carotenoides/metabolismo , Clorofila/análise , Clorofila/metabolismo , Gleiquênias/química , Minerais/análise , Fotossíntese/efeitos dos fármacos
8.
Environ Pollut ; 186: 115-25, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24370669

RESUMO

The WHAM-FTOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (FTOX), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H(+) < Al < Cu < Zn < Ni. In general, observed species richness is lower than predicted, but in some instances agreement is close, and is rarely higher than predictions. The model predicts recovery in agreement with observations for three regions, namely Sudbury (Canada), Bohemian Forest (Czech Republic) and a subset of lakes across Norway, but fails to predict observed recovery from acidification in Adirondack lakes (USA).


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Metais/toxicidade , Modelos Químicos , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Canadá , Crustáceos/classificação , Crustáceos/efeitos dos fármacos , Crustáceos/crescimento & desenvolvimento , República Tcheca , Noruega , Prótons , Zooplâncton/classificação , Zooplâncton/crescimento & desenvolvimento
9.
Environ Sci Technol ; 44(15): 5721-7, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20614900

RESUMO

The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.


Assuntos
Ácidos/toxicidade , Biota , Água Doce/química , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/análise , Chuva Ácida , Animais , Meio Ambiente , Monitoramento Ambiental , New York , Poluição Química da Água/estatística & dados numéricos
10.
J Eukaryot Microbiol ; 56(6): 559-67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19883444

RESUMO

Cyclotrichiids are of ecological and evolutionary interest by virtue of their importance in red tide formation, their highly divergent small subunit (SSU) ribosomal RNA (rRNA) genes, kleptoplastidy, and utility as indicators of eutrophication. However, only seven strains have had their SSU rRNA genes sequenced and their environmental diversity and distribution are largely unknown. We probed 67 globally dispersed freshwater column/sediment and soil DNA samples (eDNAs) and constructed 24 environmental gene libraries using polymerase chain reaction primers specific to an uncharacterised cyclotrichiid subgroup. We reveal a novel, globally ubiquitous freshwater clade comprising 25 genetically distinct SSU ribosomal DNA (rDNA) sequences (SSU-types). Some identical SSU-types were detected at globally widely distributed sites. The SSU-types form four distinct phylogenetic clusters according to marine or non-marine provenance, suggesting at least one major marine-freshwater evolutionary transition within the cyclotrichiids. We used the same primers to sample intensively 18 sampling points in 13 closely situated lakes, each characterised by 14 environmental variables, and showed that molecular detection or non-detection of cyclotrichiids was most significantly influenced by levels of total phosphorus, dissolved organic carbon, and chlorophyll a. Within the subset of lakes in which cyclotrichiids were detected, closely related SSU-types differed in their ecological preferences to pH, total phosphorus, and sample depth.


Assuntos
Biodiversidade , Cilióforos , Geografia , Animais , Evolução Biológica , Cilióforos/classificação , Cilióforos/genética , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Água Doce/parasitologia , Biblioteca Gênica , Variação Genética , Sedimentos Geológicos/parasitologia , Proliferação Nociva de Algas , Filogenia , Água do Mar/parasitologia , Análise de Sequência de DNA , Solo/parasitologia
11.
J Environ Qual ; 37(6): 2264-74, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18948480

RESUMO

Limited information is available on streams in the Adirondack region of New York, although streams are more prone to acidification than the more studied Adirondack lakes. A stream assessment was therefore undertaken in the Oswegatchie and Black River drainages; an area of 4585 km(2) in the western part of the Adirondack region. Acidification was evaluated with the newly developed base-cation surplus (BCS) and the conventional acid-neutralizing capacity by Gran titration (ANC(G)). During the survey when stream water was most acidic (March 2004), 105 of 188 streams (56%) were acidified based on the criterion of BCS < 0 microeq L(-1), whereas 29% were acidified based on an ANC(G) value < 0 microeq L(-1). During the survey when stream water was least acidic (August 2003), 15 of 129 streams (12%) were acidified based on the criterion of BCS < 0 microeq L(-1), whereas 5% were acidified based on ANC(G) value < 0 microeq L(-1). The contribution of acidic deposition to stream acidification was greater than that of strongly acidic organic acids in each of the surveys by factors ranging from approximately 2 to 5, but was greatest during spring snowmelt and least during elevated base flow in August. During snowmelt, the percentage attributable to acidic deposition was 81%, whereas during the October 2003 survey, when dissolved organic carbon (DOC) concentrations were highest, this percentage was 66%. The total length of stream reaches estimated to be prone to acidification was 718 km out of a total of 1237 km of stream reaches that were assessed.


Assuntos
Chuva Ácida/análise , Rios/química , Conservação dos Recursos Naturais , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , New York , Estações do Ano , Fatores de Tempo , Movimentos da Água
12.
Appl Environ Microbiol ; 74(6): 1856-68, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18245245

RESUMO

Although it is recognized that acidification of freshwater systems results in decreased overall species richness of plants and animals, little is known about the response of aquatic microbial communities to acidification. In this study we examined bacterioplankton community diversity and structure in 18 lakes located in the Adirondack Park (in the state of New York in the United States) that were affected to various degrees by acidic deposition and assessed correlations with 31 physical and chemical parameters. The pH of these lakes ranged from 4.9 to 7.8. These studies were conducted as a component of the Adirondack Effects Assessment Program supported by the U.S. Environmental Protection Agency. Thirty-one independent 16S rRNA gene libraries consisting of 2,135 clones were constructed from epilimnion and hypolimnion water samples. Bacterioplankton community composition was determined by sequencing and amplified ribosomal DNA restriction analysis of the clone libraries. Nineteen bacterial classes representing 95 subclasses were observed, but clone libraries were dominated by representatives of the Actinobacteria and Betaproteobacteria classes. Although the diversity and richness of bacterioplankton communities were positively correlated with pH, the overall community composition assessed by principal component analysis was not. The strongest correlations were observed between bacterioplankton communities and lake depth, hydraulic retention time, dissolved inorganic carbon, and nonlabile monomeric aluminum concentrations. While there was not an overall correlation between bacterioplankton community structure and pH, several bacterial classes, including the Alphaproteobacteria, were directly correlated with acidity. These results indicate that unlike more identifiable correlations between acidity and species richness for higher trophic levels, controls on bacterioplankton community structure are likely more complex, involving both direct and indirect processes.


Assuntos
Bactérias/crescimento & desenvolvimento , Biodiversidade , Água Doce/microbiologia , Bactérias/classificação , Bactérias/genética , Água Doce/química , Geografia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , New York , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Environ Microbiol ; 7(9): 1413-25, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16104864

RESUMO

The recent discovery of a diverse phylogenetic assemblage of picoeukaryotes from environments such as oceans, salt marshes and acidic habitats, has expanded the debates about the extent and origin of microbial eukaryotes. However, the diversity of these eukaryote microorganisms, that overlap bacteria in size, and their environmental and biogeographical ubiquity remains poorly understood. Here we survey picoeukaryotes (microbial eukaryotes of 0.2-5 microm in size) from an oligotrophic (nutrient deficient) freshwater habitat using ribosomal RNA gene sequences. Three taxonomic groups the Heterokonta, Cryptomonads and the Alveolata dominated the detected diversity. Most sequences represented previously unsampled species, with several being unassignable to known taxonomic groups and plausibly represent new or unsampled phyla. Many freshwater phylogenetic groups identified in this study appeared unrelated to picoeukaryotic sequences identified in marine ecosystems, suggesting that aspects of eukaryote microbial diversity are specific to certain aquatic environments. Conversely, at least five phylogenetic clusters comprised sequences from freshwater and globally dispersed and often contrasting environments, supporting the concept that a number of picoeukaryotic lineages are widely distributed.


Assuntos
DNA Ribossômico/genética , Água Doce/microbiologia , Variação Genética , Fitoplâncton/classificação , RNA Ribossômico 18S/genética , Sequência de Bases , Linhagem da Célula , Clonagem Molecular , Células Eucarióticas/citologia , Dados de Sequência Molecular , Filogenia , Fitoplâncton/genética
14.
J Bacteriol ; 184(5): 1481-7, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11844784

RESUMO

A group I intron has been found to interrupt the anticodon loop of the tRNA(Leu)(UAA) gene in a bacterium belonging to the gamma-subdivision of Proteobacteria and isolated from a deep subsurface environment. The subsurface isolate SMCC D0715 was identified as belonging to the genus Pseudomonas. The group I intron from this isolate is the first to be reported for gamma-proteobacteria, and the first instance of a tRNA(Leu)(UAA) group I intron to be found in a group of bacteria other than cyanobacteria. The 231-nucleotide (nt) intron's sequence has group I conserved elements and folds into a bona fide group I secondary structure with canonical base-paired segments P1 to P9 and a paired region, P10. The D0715 intron possesses the 11-nt motif CCUACG. UAUGG in its P8 region, a feature not common in bacterial introns. To date, phylogenetic analysis has shown that bacterial introns form two distinct families, and their complex distribution suggests that both lateral transfer and common ancestry have taken part in the evolutionary history of these elements.


Assuntos
Água Doce/microbiologia , Gammaproteobacteria/genética , Sedimentos Geológicos/microbiologia , Íntrons/genética , RNA de Transferência de Leucina/genética , Sequência de Bases , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/isolamento & purificação , Dados de Sequência Molecular , RNA de Transferência de Leucina/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...