Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(11): 1753-1767, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37875262

RESUMO

Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.


Assuntos
Acetilcisteína , Ocimum basilicum , Animais , Humanos , Acetilcisteína/urina , Carcinógenos , Roedores , Cromatografia Líquida , Adutos de DNA , Espectrometria de Massas em Tandem
2.
J Lipid Res ; 58(8): 1648-1660, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28588048

RESUMO

Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes such as cell proliferation and apoptosis, can be irreversibly cleaved by S1P lyase, yielding phosphoethanolamine and (2E)-hexadecenal (2EHD). The latter metabolite, an α,ß-unsaturated fatty aldehyde, may be susceptible to nucleophilic attack by cellular biomolecules. Hence, we studied whether 2EHD forms reaction products with GSH and proteins in vitro. Using LC-MS/MS and stable isotopically labeled reference material, we identified a total of nine novel reaction products of 2EHD in a cell-free approach: two GSH conjugates and seven l-amino acid adducts. Both GSH conjugates were also found in HepG2 cell lysates incubated with 2EHD. Likewise, we detected four out of seven amino acid adducts released from the model protein, BSA, and proteins extracted from HepG2 cells. On this occasion, the 2EHD Michael adduct with l-histidine proved to be the most prominent adduct. Most interestingly, inhibition of the enzymatically driven oxidative degradation of 2EHD resulted in increased levels of both GSH conjugates and protein adducts in HepG2 cell lysates. Hence, our data provide new insights into sphingolipid metabolism and will be useful to investigate certain disorders linked to an impaired fatty aldehyde metabolism in more detail.


Assuntos
Aldeídos/metabolismo , Glutationa/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas/metabolismo , Esfingosina/análogos & derivados , Células Hep G2 , Humanos , Proteínas/química , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...