Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491618

RESUMO

The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is delayed. Here, we propose a protocol for stochastic resetting that can avoid the noise-enhanced stability effect. In our approach, instead of resetting the trajectories at certain time intervals, a trajectory is reset when a predefined energy threshold is reached. The trajectories that delay the escape process are the ones that lower their energy due to the stochastic fluctuations. Our resetting approach leverages this fact and avoids long transients by resetting trajectories before they reach low-energy levels. Finally, we show that the chaotic dynamics (i.e., the sensitive dependence on initial conditions) catalyzes the effectiveness of the resetting strategy.

2.
Phys Rev E ; 107(5-1): 054215, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329100

RESUMO

In this paper, we show that the destruction of the main Kolmogorov-Arnold-Moser (KAM) islands in two-degree-of-freedom Hamiltonian systems occurs through a cascade of period-doubling bifurcations. We calculate the corresponding Feigenbaum constant and the accumulation point of the period-doubling sequence. By means of a systematic grid search on exit basin diagrams, we find the existence of numerous very small KAM islands ("islets") for values below and above the aforementioned accumulation point. We study the bifurcations involving the formation of islets and we classify them in three different types. Finally, we show that the same types of islets appear in generic two-degree-of-freedom Hamiltonian systems and in area-preserving maps.


Assuntos
Dinâmica não Linear , Simulação por Computador
3.
Chaos ; 32(6): 063118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778143

RESUMO

We investigate the possibility of avoiding the escape of chaotic scattering trajectories in two-degree-of-freedom Hamiltonian systems. We develop a continuous control technique based on the introduction of coupling forces between the chaotic trajectories and some periodic orbits of the system. The main results are shown through numerical simulations, which confirm that all trajectories starting near the stable manifold of the chaotic saddle can be controlled. We also show that it is possible to jump between different unstable periodic orbits until reaching a stable periodic orbit belonging to a Kolmogorov-Arnold-Moser island.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...