Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 6(5)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28081298

RESUMO

In a rat model of right free wall replacement, the transplantation of an engineered multilayered myocardial patch fabricated from a polycaprolactone membrane supporting a chitosan/heart matrix hydrogel induces significant muscular and vascular remodeling and results in a significantly higher right ventricular ejection fraction compared to use of a commercially available pericardium patch.


Assuntos
Quitosana , Hidrogéis , Teste de Materiais , Membranas Artificiais , Miocárdio , Pericárdio , Animais , Quitosana/química , Quitosana/farmacologia , Modelos Animais de Doenças , Feminino , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Sprague-Dawley
2.
Cell Biochem Biophys ; 74(4): 527-535, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27722948

RESUMO

The stiffness of myocardial tissue changes significantly at birth and during neonatal development, concurrent with significant changes in contractile and electrical maturation of cardiomyocytes. Previous studies by our group have shown that cardiomyocytes generate maximum contractile force when cultured on a substrate with a stiffness approximating native cardiac tissue. However, effects of substrate stiffness on the electrophysiology and ion currents in cardiomyocytes have not been fully characterized. In this study, neonatal rat ventricular myocytes were cultured on the surface of flat polyacrylamide hydrogels with elastic moduli ranging from 1 to 25 kPa. Using whole-cell patch clamping, action potentials and L-type calcium currents were recorded. Cardiomyocytes cultured on hydrogels with a 9 kPa elastic modulus, similar to that of native myocardium, had the longest action potential duration. Additionally, the voltage at maximum calcium flux significantly decreased in cardiomyocytes on hydrogels with an elastic modulus higher than 9 kPa, and the mean inactivation voltage decreased with increasing stiffness. Interestingly, the expression of the L-type calcium channel subunit α gene and channel localization did not change with stiffness. Substrate stiffness significantly affects action potential length and calcium flux in cultured neonatal rat cardiomyocytes in a manner that may be unrelated to calcium channel expression. These results may explain functional differences in cardiomyocytes resulting from changes in the elastic modulus of the extracellular matrix, as observed during embryonic development, in ischemic regions of the heart after myocardial infarction, and during dilated cardiomyopathy.


Assuntos
Potenciais de Ação/fisiologia , Miócitos Cardíacos/fisiologia , Resinas Acrílicas/química , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Módulo de Elasticidade , Hidrogéis/química , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...