Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(21): 10847-10855, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752617

RESUMO

We present a study of moderately stable dilute emulsions. These emulsions are models for water contaminated by traces of oil encountered in many water treatment situations. The purification of water and the elimination of oil rely on the emulsion stability. Despite actively being studied, the topic of emulsion stability is still far from being fully understood. In particular, it is still unclear whether experimental methods accessing different length scales lead to the same conclusions. In the study presented in this paper, we have used different methods to characterize the emulsions, such as centrifugation and simple bottle tests, as well as investigations of the collision of single macroscopic oil drops at an oil-water interface. We studied different emulsions containing added polymer or surfactant. In the case of added polymer, centrifugation and single drop experiments led to opposite trends in stability when the polymer concentration is varied. In the case of added surfactant, both centrifugation and single drop experiments show a maximum stability when the surfactant concentration is increased, whereas bottle tests show a monotonous increase in stability. We propose tentative interpretations of these unexpected observations. The apparent contradictions are due to the fact that different methods require different drop sizes or different drop concentrations. The puzzling decrease in emulsion stability at a higher surfactant concentration observed with some methods, however, remains unclear. This coalescence study illustrates the fact that different results can be obtained when different experimental methods are used. It is therefore advisable not to rely on a single method, especially in the case of emulsions of limited stability for reasons explained in the paper.

2.
Phys Rev E ; 104(1-2): 015314, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412268

RESUMO

A numerical method based on the Lattice Boltzmann formalism is presented to capture the effect of adsorption kinetics on transport in porous media. Through the use of a general adsorption operator, canonical models such as Henry and Langmuir adsorption as well as more complex adsorption mechanisms involving collective behavior with lateral interactions and surface aggregation can be investigated using this versatile model. By extending the description of adsorption phenomena to kinetic regimes with any underlying adsorption model, this effective technique allows assessing the coupled dynamics resulting from advection, diffusion, and adsorption in pores not only in stationary conditions but also under transient conditions (i.e., in regimes where the adsorbed amount evolves with time due to diffusion and advection). As illustrated in this paper, the development of such an approach provides a simple tool to determine the reciprocal effect of molecular flow and dispersion on adsorption kinetics. In this context, the use of a Lattice Boltzmann-based approach is important as it allows considering porous media of any morphology and topology. Beyond fundamental implications, this efficient method allows treating real engineering conditions such as pollutant dispersion or surfactant injection in a flowing liquid in soils and porous rocks.

3.
J Chem Inf Model ; 61(9): 4245-4258, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34405674

RESUMO

The use of quantitative structure-property relationships (QSPRs) helps in predicting molecular properties for several decades, while the automatic design of new molecular structures is still emerging. The choice of algorithms to generate molecules is not obvious and is related to several factors such as the desired chemical diversity (according to an initial dataset's content) and the level of construction (the use of atoms, fragments, pattern-based methods). In this paper, we address the problem of molecular structure generation by revisiting two approaches: fragment-based methods (FMs) and genetic-based methods (GMs). We define a set of indices to compare generation methods on a specific task. New indices inform about the explored data space (coverage), compare how the data space is explored (representativeness), and quantifies the ratio of molecules satisfying requirements (generation specificity) without the use of a database composed of real chemicals as a reference. These indices were employed to compare generations of molecules fulfilling the desired property criterion, evaluated by QSPR.


Assuntos
Algoritmos , Relação Quantitativa Estrutura-Atividade , Estrutura Molecular
4.
Angew Chem Int Ed Engl ; 60(13): 7111-7116, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33237634

RESUMO

Zeolites are essential materials to industry due to their adsorption and catalytic properties. The best current approach to prepare a targeted zeolite still relies on trial and error's synthetic procedures since a rational understanding of the impact of synthesis variables on the final structures is still missing. To discern the role of a variety of organic templates, we perform simulations of the early stages of condensation of silica oligomers by combining DFT, Brønsted-Evans-Polanyi relationships and kinetic Monte Carlo simulations. We investigate an extended reaction path mechanism including 258 equilibrium reactions and 242 chemical species up to silica octamers, comparing the computed concentrations of Si oligomers with 29 SI NMR experimental data. The effect of the templating agent is linked to the modification of the intramolecular H-bond network in the growing oligomer, which produces higher concentration of 4-membered ring intermediates, precursors of the key double-four ring building blocks present on more than 39 known zeolite topologies.

5.
J Phys Chem B ; 124(47): 10841-10849, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196196

RESUMO

Surfactant adsorption in porous media remains poorly understood, as the microscopic collective behavior of these amphiphilic molecules leads to nonconventional phenomena with complex underlying kinetics/structural organization. Here, we develop a simple thermodynamic model, which captures this rich behavior by including cooperative effects to account for lateral interactions between adsorbed molecules and the formation of ordered or disordered self-assemblies. In more detail, this model relies on a kinetic approach, involving adsorption/desorption rates that depend on the surfactant surface concentration to account for facilitated or hindered adsorption at different adsorption stages. Using different surfactants/porous solids, adsorption on both strongly and weakly adsorbing surfaces is found to be accurately described with parameters that are readily estimated from available adsorption experiments. The validity of our physical approach is confirmed by showing that the inferred adsorption/desorption rates obey the quasi-chemical approximation for lateral adsorbate interactions. Such cooperative effects are shown to lead to adsorption kinetics that drastically depart from conventional frameworks (e.g., Henry, Langmuir, and Sips models).

6.
Mol Inform ; 39(4): e1900087, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682079

RESUMO

The use of computer tools to solve chemistry-related problems has given rise to a large and increasing number of publications these last decades. This new field of science is now well recognized and labelled Chemoinformatics. Among all chemoinformatics techniques, the use of statistical based approaches for property predictions has been the subject of numerous research reflecting both new developments and many cases of applications. The so obtained predictive models relating a property to molecular features - descriptors - are gathered under the acronym QSPR, for Quantitative Structure Property Relationships. Apart from the obvious use of such models to predict property values for new compounds, their use to virtually synthesize new molecules - de novo design - is currently a high-interest subject. Inverse-QSPR (i-QSPR) methods have hence been developed to accelerate the discovery of new materials that meet a set of specifications. In the proposed manuscript, we review existing i-QSPR methodologies published in the open literature in a way to highlight developments, applications, improvements and limitations of each.


Assuntos
Quimioinformática , Relação Quantitativa Estrutura-Atividade , Algoritmos , Aprendizado de Máquina , Modelos Moleculares , Estrutura Molecular
7.
J Phys Chem B ; 123(10): 2424-2431, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30785287

RESUMO

We propose a thermodynamically consistent methodology to parameterize interactions between charged particles inside the dissipative particle dynamics (DPD) formalism. We used osmotic pressure experimental data as a function of the salinity in order to optimize the interaction parameters. Results for NaCl aqueous solution show that both mean osmotic and activity coefficients of individual ions allowed the determination of Na+-water, Cl--water, and Na+-Cl- DPD repulsion parameters. A simple linear relationship between the hydration-free energies of ions and the ion-water repulsion parameters that allows the parameterization of the complete series of halide and alkaline ions is proposed. Two strategies have been used to obtain the anion-cation interaction parameters for halide and alkaline ions. In the first one, the parameters are obtained based on the numerical optimization of the anion-cation repulsion parameter with respect to the experimental osmotic pressure data (with mean average deviations <4%). Second, we propose a predictive approach based on the free-energy difference of hydration energies of anions and cations in the spirit of the law of matching water affinities [with a mean absolute relative deviation of about 13%, better than 6% if small ions (Li+ and F-) are removed].

8.
J Chem Theory Comput ; 14(8): 4438-4454, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906108

RESUMO

In this work, liquid-liquid systems are studied by means of coarse-grained Monte Carlo simulations (CG-MC) and Dissipative Particle Dynamics (DPD). A methodology is proposed to reproduce liquid-liquid equilibrium (LLE) and to provide variation of interfacial tension (IFT), as a function of the solute concentration. A key step is the parametrization method based on the use of the Flory-Huggins parameter between DPD beads to calculate solute/solvent interactions. Parameters are determined using a set of experimental compositional data of LLE, following four different approaches. These approaches are evaluated, and the results obtained are compared to analyze advantages/disadvantages of each one. These methodologies have been compared through their application on six systems: water/benzene/1,4-dioxane,water/chloroform/acetone, water/benzene/acetic acid, water/benzene/2-propanol, water/hexane/acetone, and water/hexane/2-propanol. CG-MC simulations in the Gibbs (NVT) ensemble have been used to check the validity of parametrization approaches for LLE reproduction. Then, CG-MC simulations in the osmotic (µsoluteNsolventP zzT) ensemble were carried out considering the two liquid phases with an explicit interface. This step allows one to work at the same bulk concentrations as the experimental data by imposing the precise bulk phase compositions and predicting the interface composition. Finally, DPD simulations were used to predict IFT values for different solute concentrations. Our results on variation of IFT with solute concentration in bulk phases are in good agreement with experimental data, but some deviations can be observed for systems containing hexane molecules.

9.
J Chem Theory Comput ; 13(6): 2881-2889, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28535342

RESUMO

We investigate finite-size effects on diffusion in confined fluids using molecular dynamics simulations and hydrodynamic calculations. Specifically, we consider a Lennard-Jones fluid in slit pores without slip at the interface and show that the use of periodic boundary conditions in the directions along the surfaces results in dramatic finite-size effects, in addition to that of the physically relevant confining length. As in the simulation of bulk fluids, these effects arise from spurious hydrodynamic interactions between periodic images and from the constraint of total momentum conservation. We derive analytical expressions for the correction to the diffusion coefficient in the limits of both elongated and flat systems, which are in excellent agreement with the molecular simulation results except for the narrowest pores, where the discreteness of the fluid particles starts to play a role. The present work implies that the diffusion coefficients for wide nanopores computed using elongated boxes suffer from finite-size artifacts which had not been previously appreciated. In addition, our analytical expression provides the correction to be applied to the simulation results for finite (possibly small) systems. It applies not only to molecular but also to all mesoscopic hydrodynamic simulations, including Lattice-Boltzmann, Multiparticle Collision Dynamics or Dissipative Particle Dynamics, which are often used to investigate confined soft matter involving colloidal particles and polymers.

11.
Langmuir ; 31(4): 1400-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25558765

RESUMO

This work includes both experimental and theoretical studies of the wetting property changes of water on a surface of poly(dimethylsiloxane) (PDMS) modified with different amounts of acrylic acid (AA). The default surface properties of PDMS were changed from hydrophobic to hydrophilic behavior which was characterized with contact angle measurements by two approaches: (i) experimental tests of samples subjected to a photografting polymerization procedure to obtain a functionalized surface and (ii) DPD (dissipative particle dynamics) simulations which also involve the calculation of sets of repulsive parameters determined following two methods: the use of the "Blends" module in the Materials Studio software and the calculation of cohesive energy density with molecular simulations. Changes of contact angle values observed from both experimental and numerical simulation results provide qualitative and quantitative information on the wetting behavior of photografted surfaces.

12.
J Chem Theory Comput ; 9(4): 2097-103, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583556

RESUMO

Due to the importance of alkanolamines as solvents in several industrial processes and the absence of a dedicated transferable force field for them, we have developed an anisotropic united-atom (AUA4) force field for primary, secondary, and tertiary alkanolamines. In addition to correctly reproducing the experimental densities, additional properties for six different molecules have been verified at different temperatures including vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures, and critical densities. A qualitative analysis of the radial distribution function of pure monoethanolamine has also been carried out. Furthermore, the viscosity coefficients were also calculated as a function of temperature and found to be in good agreement with experimental data. Finally, and perhaps most strikingly, the prediction of the excess enthalpies of alkanolamines in aqueous solutions has been found to be in excellent qualitative agreement with experimental data.

13.
J Phys Chem B ; 116(21): 6193-202, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22551443

RESUMO

Following the same philosophy of our previous force field for primary amines (J. Phys. Chem. B2011, 115, 14617), we present an extension for secondary and tertiary amines using the anisotropic united atom (AUA4) approach. The force field is developed to predict the phase equilibrium and transport properties of secondary and tertiary amines. The transferability was studied for an important set of molecules including as secondary amines dimethylamine, diethylamine, di-n-propylamine, di-iso-propylamine, and di-iso-butylamine. We have also tested diethylenetriamine, a multifunctional molecule which includes two primary and one secondary amino groups. For tertiary amines, we have included simulations for trimethylamine, triethylamine, tri-n-propylamine, and methyldiethylamine. Monte Carlo simulations in the Gibbs ensemble were carried out to study thermodynamic properties such as equilibrium densities, vaporization enthalpies, and vapor pressures. Critical coordinates (critical density and critical temperature) and normal boiling points were also calculated. The shear viscosity coefficients were studied for dimethyl, diethyl, di-n-propyl, trimethyl, triethyl, and tri-n-propylamine at different temperatures using molecular dynamics in the isothermal isobaric ensemble. Our results show a very good agreement with experimental values for all the studied molecules for both thermodynamic and transport properties, demonstrating the transferability of our force field.

14.
J Phys Chem B ; 116(9): 2787-800, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22292779

RESUMO

Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers.

15.
J Phys Chem B ; 115(49): 14617-25, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22034922

RESUMO

A new anisotropic united atom (AUA4) force field is developed to predict the phase equilibrium and transport properties of different primary amines. The force field transferability was studied for an important set of molecules, including linear amines (methyl, ethyl, n-propyl, and n-hexylamine), branched amines (isopropyl and isobutylamine), and bifunctional amines (ethylenediamine, 1,3-propanediamine, and 1,5-pentanediamine). Monte Carlo simulations in the Gibbs ensemble were carried out to study thermodynamic properties such as equilibrium densities, vaporization enthalpies, and vapor pressures. Critical coordinates (critical density, critical temperature, and critical pressure) and normal boiling points were also calculated. The shear viscosity coefficients were studied for methyl, ethyl, and n-propylamine at different temperatures using molecular dynamics. Our results show a very good agreement with experimental values for thermodynamic properties and are an improvement on the models available in the literature, all of which are all-atom. Viscosity coefficients also show a good agreement compared with experimental data, demonstrating the transferability of our force field not only to predict thermodynamic properties but also to predict transport properties.

16.
J Phys Chem B ; 114(19): 6522-30, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20420410

RESUMO

A new potential model for polycyclic aromatic hydrocarbons has been developed on the basis of a charged anisotropic united atoms (AUA) potential with six AUA force centers and three electrostatic point charges per aromatic ring. Using quantum mechanical calculations, quadrupolar moments of several aromatic molecules were computed and a correlation has been observed that links the magnitude of the point charges with respect to the number of aromatic rings. The Lennard-Jones parameters of quaternary carbon atoms bridging two aromatic rings have been optimized with the minimization of a dimensionless error criterion incorporating various thermodynamic data of naphthalene. The new potential model, called ch-AUA, was then evaluated on its abilities to predict thermodynamic and transport properties for a series of polycyclic aromatic compounds in a wide range of temperatures. Although the relative errors with respect to the experimental density, vaporization enthalpy, and vapor pressure data are similar to those computed with the noncharged AUA potential, the new ch-AUA potential noticeably improves the prediction of the shear viscosities of polycyclic aromatic compounds. Comparisons between experimental viscosities of 1-methylnaphthalene at different pressures and those computed using the new ch-AUA and the noncharged AUA potentials show that the new potential improves the prediction of viscosities at high pressures.

17.
Chemistry ; 16(5): 1560-71, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19998434

RESUMO

Experimental measurements and molecular simulations were conducted for two zeolitic imidazolate frameworks, ZIF-8 and ZIF-76. The transferability of the force field was tested by comparing molecular simulation results of gas adsorption with experimental data available in the literature for other ZIF materials (ZIF-69). Owing to the good agreement observed between simulation and experimental data, the simulation results can be used to identify preferential adsorption sites, which are located close to the organic linkers. Topological mapping of the potential-energy surfaces makes it possible to relate the preferential adsorption sites, Henry constant, and isosteric heats of adsorption at zero coverage to the nature of the host-guest interactions and the chemical nature of the organic linker. The role played by the topology of the solid and the organic linkers, instead of the metal sites, upon gas adsorption on zeolite-like metal-organic frameworks is discussed.

18.
J Phys Chem B ; 112(51): 16664-74, 2008 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19367909

RESUMO

Transport properties of liquid methanol and ethanol are predicted by molecular dynamics simulation. The molecular models for the alcohols are rigid, nonpolarizable, and of united-atom type. They were developed in preceding work using experimental vapor-liquid equilibrium data only. Self- and Maxwell-Stefan diffusion coefficients as well as the shear viscosity of methanol, ethanol, and their binary mixture are determined using equilibrium molecular dynamics and the Green-Kubo formalism. Nonequilibrium molecular dynamics is used for predicting the thermal conductivity of the two pure substances. The transport properties of the fluids are calculated over a wide temperature range at ambient pressure and compared with experimental and simulation data from the literature. Overall, a very good agreement with the experiment is found. For instance, the self-diffusion coefficient and the shear viscosity are predicted with average deviations of less than 8% for the pure alcohols and 12% for the mixture. The predicted thermal conductivity agrees on average within 5% with the experimental data. Additionally, some velocity and shear viscosity autocorrelation functions are presented and discussed. Radial distribution functions for ethanol are also presented. The predicted excess volume, excess enthalpy, and the vapor-liquid equilibrium of the binary mixture methanol + ethanol are assessed and agree well with experimental data.

19.
J Phys Chem B ; 112(51): 16610-8, 2008 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19367942

RESUMO

The objective of this work was to determine Fick diffusion coefficients in CO2/n-alkane binary mixtures without experimental test. For doing so, Maxwell-Stefan (MS) diffusivity was calculated by molecular simulation. Simultaneously, a thermodynamic factor was estimated using the PC-SAFT (perturbed chain statistical associating fluid theory) equation of state (eos). The binary Fick diffusivities are calculated as the product of both quantities. The binary mixtures investigated contain CO2 and various n-alkanes (nC10, nC16, nC22, nC28, nC44), at their bubble pressure at varying temperatures between 298 and 373 K. The calculated values of Fick diffusivities were compared against the experimental ones for the systems where literature data exist. An average deviation of 26% was found for the CO2/n-decane and 15% for CO2/n-hexadecane mixtures. These results support that molecular simulation can be employed as a tool for the determination of Fick diffusivities in high pressure systems, like in oil reservoirs, without the need to construct a complicated and expensive experimental setup. This method only requires the phase behavior of the desired system, and it can be used for multicomponent mixtures. As an example, predictions of Fick diffusivities were done for CO2 binary mixtures with heavy n-alkanes (nC22, nC28, nC44).

20.
J Phys Chem B ; 111(14): 3730-41, 2007 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-17388536

RESUMO

An optimization including electrostatic interactions has been performed for the parameters of an anisotropic united atoms intermolecular potential for benzene for thermodynamic and transport property prediction using Gibbs ensemble, isothermal-isobaric (NPT) Monte Carlo, and molecular dynamic simulations. The optimization procedure is based on the minimization of a dimensionless error criterion incorporating various thermodynamic data (saturation pressure, vaporization enthalpy, and liquid density) at ambient conditions and at 350 and 450 K. A comprehensive comparison of the new model is given with other intermolecular potentials taken from the literature. Overall thermodynamic, structural, reorientational, and translational dynamic properties of our optimized model are in very good agreement with experimental data. The new model also provides a good representation of the liquid structure, as revealed by three-dimensional spatial density functions and carbon-carbon radial distribution function. Shear viscosity variations with temperature and pressure are very well reproduced, revealing a significant improvement with respect to nonpolar models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...