Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 176(2): 1773-1792, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192025

RESUMO

Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Resistência à Doença , Doenças das Plantas/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Aminoácidos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oomicetos/patogenicidade , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética
2.
Front Plant Sci ; 5: 54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600465

RESUMO

In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic α subunit associates with a regulatory ß subunit and an activating γ subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1α subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...