Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997146

RESUMO

It has long been assumed that activity patterns persist in neuronal circuits after they are first experienced, as part of the process of information processing and storage by the brain. However, these "reverberations" of current activity have not been directly observed on a single neuron level in a mammalian system. Here we demonstrate that specific induced activity patterns are retained in mature cultured hippocampal neuronal networks. Neurons within the network are induced to fire at a single frequency or in a more complex pattern containing two distinct frequencies. After the stimulation was stopped, the subsequent neuronal activity of hundreds of neurons in the network was monitored. In the case of single-frequency stimulation, it was observed that many of the neurons continue to fire at the same frequency that they were stimulated to fire at. Using a Recurrent Neural Network (RNN) trained to detect specific, more complex patterns, we found that the multiple-frequency stimulation patterns were also retained within the neuronal network. Moreover, it appears that the component frequencies of the more complex patterns are stored in different populations of neurons and neuron subtypes.Significance Statement The existence of memory engrams, or reverberations of recently experienced activity patterns, has long been supposed but never directly demonstrated in mammalian neuronal networks. Through the use of highly accessible cultured neuronal networks grown on silicon wafers, stimulated to fire in user-defined patterns using photoconductive stimulation, we have demonstrated their existence and established a paradigm for the analysis of the microcircuitry involved.

2.
Front Behav Neurosci ; 16: 769322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273483

RESUMO

Zinc is important in neural and synaptic development and neuronal transmission. Within the brain, zinc transporter 3 (ZnT3) is essential for zinc uptake into vesicles. Loss of vesicular zinc has been shown to produce neurodevelopmental disorder (NDD)-like behavior, such as decreased social interaction and increased anxiety- and repetitive-like behavior. Maternal immune activation (MIA) has been identified as an environmental factor for NDDs, such as autism spectrum disorders (ASDs) and schizophrenia (SZ), in offspring, which occurs during pregnancy when the mother's immune system reacts to the exposure to viruses or infectious diseases. In this study, we investigated the interaction effect of a genetic factor [ZnT3 knockout (KO) mice] and an environmental factor (MIA). We induced MIA in pregnant female (dams) mice during mid-gestation, using polyinosinic:polycytidylic acid (polyI:C), which mimics a viral infection. Male and female ZnT3 KO and wild-type (WT) offspring were tested in five behavioral paradigms: Ultrasonic Vocalizations (USVs) at postnatal day 9 (P9), Open Field Test, Marble Burying Test, three-Chamber Social Test, and Pre-pulse Inhibition (PPI) in adulthood (P60-75). Our results indicate that loss of vesicular zinc does not result in enhanced ASD- and SZ-like phenotype compared to WT, nor does it show a more pronounced phenotype in male ZnT3 KO compared to female ZnT3 KO. Finally, MIA offspring demonstrated an ASD- and SZ-like phenotype only in specific behavioral tests: increased calls emitted in USVs and fewer marbles buried. Our results suggest that there is no interaction between the loss of vesicular zinc and MIA induction in the susceptibility to developing an ASD- and SZ-like phenotype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...