Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 274: 126012, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554482

RESUMO

A paper electrochemical immunosensor for the combined binding and quantification of the heart failure (HF) biomarker Galectin-3 has been developed. The simple design of the new sensor is comprised of paper material that is decorated with gold nanostructures, to maximize its electroactive surface area, and functionalized with target-specific recognition molecules to selectively bind the protein from aqueous solutions. The binding of the protein caused the blockage of the electron flow to the sensor electroactive surface, thus causing its oxidation potential to shift and the corresponding current to reduce quantitatively with the increase in the protein concentration within the working range of 0.5ng/mL-8ng/mL (LOQ-0.5 ng/mL). This novel sensor was able to quantify Galectin-3 concentration in saliva samples from HF patients and healthy controls within 20 min with good reproducibility (RSD = 3.64%), without the need for complex sample processing steps. The electrochemical measurements of the patient samples were cross validated by ELISA where the percent agreement between the two methods was found to be 92.7% (RSD = 7.20%). Therefore, the new paper immunosensor sensor has a strong potential for rapid and cost-effective screening of the Galectin 3 biomarker at points of care, thus supporting the timely diagnosis of heart failure.


Assuntos
Técnicas Biossensoriais , Proteínas Sanguíneas , Técnicas Eletroquímicas , Galectina 3 , Insuficiência Cardíaca , Papel , Humanos , Insuficiência Cardíaca/diagnóstico , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Galectina 3/análise , Saliva/química , Biomarcadores/análise , Ouro/química , Galectinas/análise , Limite de Detecção
2.
SLAS Discov ; 27(6): 331-336, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667647

RESUMO

Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Cisteína , Ouro/química , Humanos , Limite de Detecção , Proteínas de Membrana
3.
Talanta ; 248: 123630, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660992

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health. Current methods such as reverse transcription polymerase chain reaction (qRT-PCR) are complex, expensive, and time-consuming. Rapid, and simple screening methods for the detection of SARS-CoV-2 are critically required to fight the current pandemic. In this work we present a proof of concept for, a simple optical sensing method for the screening of SARS-CoV-2 through its spike protein subunit S1. The method utilizes a target-specific extractor chip to bind the protein from the biological specimens. The disulfide bonds of the protein are then reduced into a biothiol with sulfhydryl (SH) groups that react with a blue-colored benzothiazole azo dye-Hg complex (BAN-Hg) and causes the spontaneous change of its blue color to pink which is observable by the naked eye. A linear relationship between the intensity of the pink color and the logarithm of reduced S1 protein concentration was found within the working range 130 ng.mL-1-1.3 pg mL-1. The lowest limit of detection (LOD) of the assay was 130 fg mL-1. A paper based optical sensor was fabricated by loading the BAN-Hg sensor onto filter paper and used to screen the S1 protein in spiked saliva and patients' nasopharyngeal swabs. The results obtained by the paper sensor corroborated with those obtained by qRT-PCR. The new paper-based sensing method can be extended to the screening of many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method has strong potential for screening viruses at pathology labs and in remote areas that lacks advanced scientific infrastructure. Further clinical studies are warranted to validate the new sensing method.


Assuntos
COVID-19 , Mercúrio , COVID-19/diagnóstico , Cisteína , Humanos , Proteínas de Membrana , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...