Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 9(2): 387-396, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29552380

RESUMO

Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 µm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.

2.
Sci Rep ; 6: 25950, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27185264

RESUMO

This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy.

3.
Microscopy (Oxf) ; 63 Suppl 1: i29, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25359828

RESUMO

Correlative light and electron microscopy (CLEM) is one attractive method of observing biological specimens because it combines the advantages of both light microscopy (LM) and electron microscopy (EM). In LM, specimens are fully hydrated, and molecular species are distinguished based on the fluorescence colors of probes. EM provides both high-spatial-resolution images superior to those obtained with LM and ultrastructural information of cellular components. The combination of LM and EM gives much more information than either method alone, which helps us to analyze cellular function in more detail.We propose a Y2O3:Tm,Yb phosphor nanoparticle which allows upconversion luminescence (UCL) imaging with near-infrared (NIR) light excitation and cathodoluminescence (CL) imaging [1], where the light emission induced by an electron beam is called cathodoluminescence (CL). Due to electron beam excitation, the spatial resolution of CL microscopy is on the order of nanometers [2,3]. Upconversion is a process in which lower energy, longer wavelength excitation light is transduced to higher energy, shorter wavelength emission light. So far, in LM observation for CLEM, ultraviolet (UV) or visible light has been used for excitation. However, UV and visible light have limited ability to observe deep tissue regions due to absorption, scattering, and autofluorescence. On the other hand, NIR light does not suffer from these problems. Rare-earth-doped upconversion nanophosphors have been applied to biological imaging because of the advantages of NIR excitation [4].We investigated the UCL and CL spectra of Y2O3:Tm,Yb nanophosphors. Y2O3:Tm,Yb nanophosphors that emit visible and near-infrared UCL under 980nm irradiation and blue CL via electron beam excitation. To confirm bimodality of our nanophosphors, correlative UCL/CL images of the nanophosphors were obtained for the same region. The nanophosphors were poured onto a P doped Si substrate (Fig. 1(a)) and were irradiated with 980 nm NIR CW laser light or an electron beam. Fig. 1(b) shows the UCL image of the nanophosphors under 980 nm NIR CW laser irradiation, UCL spots were observed, but the individual nanophosphors in each spot were difficult to distinguish in the UCL image. On the other hand, the edges and the gap between the nanophosphors were clearly distinguished in the CL image (Fig. 1(c)), showing that the spatial-resolution of CL imaging was enough higher than that of UCL image. We believe that upconversion phosphors of the type described here will allow the realization of new CLEM imaging techniques covering the nanometer to millimeter scale, i.e., the molecular to in vivo scale.jmicro;63/suppl_1/i29/DFU073F1F1DFU073F1Fig. 1.(a) SEM and correlative (b) UCL (intensity of 980 nm NIR CW laser 8 mW) and (c) CL images of Y2O3:Tm,Yb nanophosphors in same region (accelerating voltage 3 kV, exposure time 100 ms/pixel).

4.
Opt Express ; 16(19): 14476-95, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18794984

RESUMO

To understand the onset and morphology of femtosecond laser submicron ablation in cells and to study physical evidence of intracellular laser irradiation, we used transmission electron microscopy (TEM). The use of partial fixation before laser irradiation provides for clear images of sub-micron intracellular laser ablation, and we observed clear evidence of bubble-type physical changes induced by femtosecond laser irradiation at pulse energies as low as 0.48 nJ in the nucleus and cytoplasm. By taking ultrathin sliced sections, we reconstructed the laser affected subcellular region, and found it to be comparable to the point spread function of the laser irradiation. Laser-induced bubbles were observed to be confined by the surrounding intracellular structure, and bubbles were only observed with the use of partial pre-fixation. Without partial pre-fixation, laser irradiation of the nucleus was found to produce observable aggregation of nanoscale electron dense material, while irradiation of cytosolic regions produced swollen mitochondria but residual local physical effects were not observed. This was attributed to the rapid collapse of bubbles and/or the diffusion of any observable physical effects from the irradiation site following the laser exposure.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos da radiação , Tamanho Celular/efeitos da radiação , Terapia a Laser/métodos , Relação Dose-Resposta à Radiação , Células HeLa , Humanos , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...