Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901690

RESUMO

Exercise is shown to improve cognitive function in various human and animal studies. Laboratory mice are often used as a model to study the effects of physical activity and running wheels provide a voluntary and non-stressful form of exercise. The aim of the study was to analyze whether the cognitive state of a mouse is related to its wheel-running behavior. Twenty-two male C57BL/6NCrl mice (9.5 weeks old) were used in the study. The cognitive function of group-housed mice (n = 5-6/group) was first analyzed in the IntelliCage system followed by individual phenotyping with the PhenoMaster with access to a voluntary running wheel. The mice were divided into three groups according to their running wheel activity: low, average, and high runners. The learning trials in the IntelliCage showed that the high-runner mice exhibited a higher error rate at the beginning of learning trials but improved their outcome and learning performance more compared to the other groups. The high-runner mice ate more compared to the other groups in the PhenoMaster analyses. There were no differences in the corticosterone levels between the groups, indicating similar stress responses. Our results demonstrate that high-runner mice exhibit enhanced learning capabilities prior to access to voluntary running wheels. In addition, our results also show that individual mice react differently when introduced to running wheels, which should be taken into consideration when choosing animals for voluntary endurance exercise studies.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Humanos , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Aprendizagem , Condicionamento Físico Animal/fisiologia
2.
J Clin Med ; 11(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35743338

RESUMO

Our aim was to compare three research-grade accelerometers for their accuracy in step detection and energy expenditure (EE) estimation in a laboratory setting, at different speeds, especially in overweight/obese participants. Forty-eight overweight/obese subjects participated. Participants performed an exercise routine on a treadmill with six different speeds (1.5, 3, 4.5, 6, 7.5, and 9 km/h) for 4 min each. The exercise was recorded on video and subjects wore three accelerometers during the exercise: Sartorio Xelometer (SX, hip), activPAL (AP, thigh), and ActiGraph GT3X (AG, hip), and energy expenditure (EE) was estimated using indirect calorimetry for comparisons. For step detection, speed-wise mean absolute percentage errors for the SX ranged between 9.73-2.26, 6.39-0.95 for the AP, and 88.69-2.63 for the AG. The activPALs step detection was the most accurate. For EE estimation, the ranges were 21.41-15.15 for the SX, 57.38-12.36 for the AP, and 59.45-28.92 for the AG. All EE estimation errors were due to underestimation. All three devices were accurate in detecting steps when speed exceeded 4 km/h and inaccurate in EE estimation regardless of speed. Our results will guide users to recognize the differences, weaknesses, and strengths of the accelerometer devices and their algorithms.

3.
Genes (Basel) ; 13(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205223

RESUMO

Epigenetic changes have been identified as a major driver of fundamental metabolic pathways. More specifically, the importance of epigenetic regulatory mechanisms for biological processes like speciation and embryogenesis has been well documented and revealed the direct link between epigenetic modifications and various diseases. In this review, we focus on epigenetic changes in animals with special attention on human DNA methylation utilizing ancient and modern genomes. Acknowledging the latest developments in ancient DNA research, we further discuss paleoepigenomic approaches as the only means to infer epigenetic changes in the past. Investigating genome-wide methylation patterns of ancient humans may ultimately yield in a more comprehensive understanding of how our ancestors have adapted to the changing environment, and modified their lifestyles accordingly. We discuss the difficulties of working with ancient DNA in particular utilizing paleoepigenomic approaches, and assess new paleoepigenomic data, which might be helpful in future studies.


Assuntos
DNA Antigo , Epigenômica , Animais , Metilação de DNA/genética , Epigênese Genética/genética , Genoma/genética
4.
Commun Biol ; 4(1): 1170, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620965

RESUMO

Reindeer (Rangifer tarandus) are semi-domesticated animals adapted to the challenging conditions of northern Eurasia. Adipose tissues play a crucial role in northern animals by altering gene expression in their tissues to regulate energy homoeostasis and thermogenic activity. Here, we perform transcriptome profiling by RNA sequencing of adipose tissues from three different anatomical depots: metacarpal (bone marrow), perirenal, and prescapular fat in Finnish and Even reindeer (in Sakha) during spring and winter. A total of 16,212 genes are expressed in our data. Gene expression profiles in metacarpal tissue are distinct from perirenal and prescapular adipose tissues. Notably, metacarpal adipose tissue appears to have a significant role in the regulation of the energy metabolism of reindeer in spring when their nutritional condition is poor after winter. During spring, genes associated with the immune system are upregulated in the perirenal and prescapular adipose tissue. Blood and tissue parameters reflecting general physiological and metabolic status show less seasonal variation in Even reindeer than in Finnish reindeer. This study identifies candidate genes potentially involved in immune response, fat deposition, and energy metabolism and provides new information on the mechanisms by which reindeer adapt to harsh arctic conditions.


Assuntos
Adaptação Biológica/genética , Tecido Adiposo/metabolismo , Rena/genética , Transcriptoma , Animais , Regiões Árticas , Finlândia , Rena/metabolismo , Estações do Ano , Sibéria
5.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502532

RESUMO

Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.


Assuntos
Adaptação Fisiológica/fisiologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Cães Guaxinins/metabolismo , Estações do Ano , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Bege/diagnóstico por imagem , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Branco/diagnóstico por imagem , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Fluordesoxiglucose F18/metabolismo , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Termogênese , Proteína Desacopladora 1/metabolismo
6.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067001

RESUMO

Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adaptation, we analyzed key central nervous system and peripheral signals regulating food intake and metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropeptide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb) were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis. However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine levels were not increased, demonstrating that the autumn fattening did not induce subacute inflammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate the autumnal fattening and prolonged fasting making the species unique in coping with the extreme environmental challenges.


Assuntos
Adiposidade , Jejum/metabolismo , Metaboloma , Cães Guaxinins/metabolismo , Estações do Ano , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/patologia , Animais , Biomarcadores/metabolismo , Peso Corporal , Análise Discriminante , Feminino , Hormônios/sangue , Hipotálamo/metabolismo , Inflamação/patologia , Análise dos Mínimos Quadrados , Limite de Detecção , Análise Multivariada , Peptídeos/genética , Peptídeos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cães Guaxinins/sangue , Receptores de Peptídeos/metabolismo
7.
J Agric Food Chem ; 67(4): 1104-1114, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30592221

RESUMO

Insoluble residue (INS) is a lignin-rich fraction of brewer's spent grain (BSG) that also contains ß-glucan and arabinoxylan, the major constituents of dietary fiber. We investigated the effects of INS in diet-induced obese mice in terms of lipid metabolism and metabolic diseases. Male mice (C57bl6) were fed a high-fat diet (HFD), a HFD + 20% INS, a HFD + 20% cellulose (CEL), a HFD with a combination of 20% INS-CEL (1:1), or a control diet for 14 weeks. Insulin and glucose tolerance tests were performed after 12 weeks. Fasting plasma lipids, bile acid, and fecal bile acid were measured after 14 weeks of feeding, and tissues were collected for gene expression analysis. Body weight gain was significantly reduced with all fibers, but only INS and INS-CEL decreased fasting plasma low-density lipoprotein cholesterol and total cholesterol compared to HFD. CEL and INS-CEL significantly improved insulin resistance. Fecal bile acids were significantly increased by all fibers, but there was no change in plasma bile acid. Clostridium leptum was increased with all fibers, but universal bacterial diversity was only with INS and INS-CEL. In addition, INS significantly increased the abundance of Bacteriodes, while CEL decreased Atopobium and Lactobacillus. INS feeding significantly upregulated various genes of cholesterol and bile acid metabolism, such as Srebp2, Hmgcr, Ldlr, Cyp7a1, Pparα, Fxr, and Pxr, in the liver. INS, INS-CEL, and CEL significantly attenuated liver steatosis. Our results suggest that INS from BSG induced beneficial systemic changes in mice via gut microbiota, bile acids, and gene expression in the liver.


Assuntos
Anticolesterolemiantes/metabolismo , Grão Comestível/metabolismo , Hipercolesterolemia/metabolismo , Lignina/metabolismo , Resíduos/análise , Animais , Anticolesterolemiantes/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colesterol/sangue , Dieta Hiperlipídica/efeitos adversos , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/microbiologia , Hipercolesterolemia/fisiopatologia , Lignina/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...