Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Plant Biol ; 24(1): 597, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914943

RESUMO

Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Prata/farmacologia , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Clavibacter , Moringa oleifera/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde , Folhas de Planta/microbiologia
3.
BMC Plant Biol ; 24(1): 606, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926658

RESUMO

Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.


Assuntos
Antioxidantes , Daucus carota , Germinação , Nitratos , Compostos de Potássio , Plântula , Sementes , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Nitratos/metabolismo , Nitratos/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Daucus carota/crescimento & desenvolvimento , Daucus carota/efeitos dos fármacos , Daucus carota/fisiologia , Compostos de Potássio/farmacologia , Germinação/efeitos dos fármacos , Temperatura Alta
4.
J Trace Elem Med Biol ; 83: 127411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387428

RESUMO

BACKGROUND: This research delves into the reproductive toxicology of zinc oxide nanoparticles (ZnO-NPs) in male Sprague Dawley rats. It specifically examines the repercussions of Zn accumulation in the testes, alterations in testosterone levels, and histopathological changes in the gonadal tissues. AIMS: The primary objective of this study is to elucidate the extent of reproductive toxicity induced by ZnO-NPs in male Sprague Dawley rats. The investigation aims to contribute to a deeper understanding of the potential endocrine and reproductive disruptions caused by ZnO-NPs exposure. METHODS: Characterization techniques including SEM-EDX and XRD affirmed the characteristic nature of ZnO-NPs. Twenty-five healthy post weaning rats (200-250 g) were intraperitoneally exposed to different concentrations of ZnO-NPs @ 10 or 20 or 30 mg/kg BW for 28 days on alternate days. RESULTS: Results showed significant dose dependent decline in the body weight and testicular somatic index of rats. It also showed significant dose dependent accumulation of Zn in testis with increasing dose of ZnO-NPs. Conversely, serum testosterone level and sperm count were reduced with increasing dose of ZnO-NPs. Histological results showed dose dependent abnormalities i.e., vacuolization, edema, hemorrhage, destruction of seminiferous tubules, loss of germ cells and necrosis in rat testis. CONCLUSION: The findings of this study clearly indicate that high doses of zinc oxide nanoparticles (ZnO-NPs) can adversely affect the structural integrity and functional efficacy of the male reproductive system. Given these results, it becomes crucial to implement stringent precautionary measures in the utilization of ZnO-NPs, particularly in cosmetics and other relevant sectors. Such measures are imperative to mitigate the toxicological impact of ZnO-NPs on the male reproductive system and potentially on other related physiological functions. This study underscores the need for regulatory vigilance and safety assessments in the application of nanotechnology to safeguard human health.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Ratos , Masculino , Animais , Óxido de Zinco/toxicidade , Ratos Sprague-Dawley , Sêmen , Nanopartículas/toxicidade , Testosterona
5.
Nat Prod Res ; : 1-10, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798247

RESUMO

Carrot (Daucus carota L.) is a nutrient-rich vegetable that is widely cultivated and consumed in Pakistan in both raw and processed form. Data on the proximate composition and natural occurrence of aflatoxins (AFs) in carrots and marketed carrot products is lacking in Pakistan and the risk exposure of AF has not been characterised before. Thus, the current study was designed to know the frequently consumed carrot products with per capita consumption, and risk assessment of AF through these products in various regions of South Punjab Pakistan. A survey was conducted with 125 respondents and appeared that raw carrot, fresh carrot juice, gajrella and pickle are the most frequently consumed marketed carrot products with per capita consumption i.e. 62.5, 46.6, 16.2 and 14.5 gday-1, respectively. Proximate analysis revealed that carrot root and processed carrot products contained 9.65-98.2% moisture, 0.23-0.60% ash, 6.2-14.1% carbohydrates, 0.31-0.80% protein, 0.40-3.7% fat and 1.4-4.20% fibre. AF analysis revealed that 36.67% of samples were contaminated with TAF. Thirty-five (35%) percent of samples were tainted with aflatoxin B1, and 13.33% of samples were contaminated with aflatoxin B2. All the samples of carrot root, fresh carrot juice and gajrella contained TAF levels less than the maximum limit (ML) (2 ppb) assigned by the European Union (EU). However, the entire AFB1 positive samples of carrot pickle contained AFB1 levels of more than 2 ppb exceeding the ML. Furthermore, daily dietary exposure of TAFs ranged from 0.11 to 1.27 ng/kg of body weight per day which relatively exceeds the permissible limit of 1 ng/kg of body weight per day as defined by the Joint FAO/WHO Expert Committee on Food Additives. This is the first prevalence and risk assessment report of AF in marketed processed carrot products in Pakistan. These baseline data are an initial step in the effort to deal with this significant food safety issue and the establishment of legislation for AF in marketed products is needed in Pakistan.

6.
Nat Prod Res ; 37(19): 3314-3322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35428423

RESUMO

Chickpea, Cicer arietinum L., is a nutrient rich crop that is widely cultivated and consumed in Pakistan. However, chickpea is highly prone to fungal growth leading to contamination with aflatoxins, the most potent carcinogen found in nature. In this study, fifty chickpea seed samples were collected from the local markets of the Punjab, Pakistan, to evaluate their nutritional quality, fungal and AFB1 contamination. Proximate analysis suggested that chickpea seeds contained 5.5-6.93% moisture, 62.24-63.24% carbohydrates, 22.75-23.44% protein, 4.99-5.4% fat, 5.62-5.84% fiber and 2.92-3.16% ash. Morphological identification techniques revealed fourteen fungal species belonging to six fungal genera from which Aspergillus flavus was the leading contaminant. AFB1 analysis revealed that sixty-two percent samples were contaminated with AFB1. All the AFB1 positive samples contained AFB1 level more than 2 ppb and 12.9% samples contain AFB1 level more than 20 ppb, exceeded the maximum limit (ML) assigned by EU and USA (FDA & FAO) respectively. The results of the present studies reported that chickpea is a highly contaminated commodity in terms of fungi and AFB1 that's why further investigations and monitoring are required to reduce the fungal and AFB1 contamination. These baseline data are an initial step in the effort to deal with this significant food safety issue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...