Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124254, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38795934

RESUMO

Cancer vaccines can be utilized in combination with checkpoint inhibitors to optimally stimulate the anti-tumor immune response. Uptake of vaccine antigen by antigen presenting cells (APCs) is a prerequisite for T cell priming, but often relies on non-specific mechanisms. Here, we have developed a novel vaccination strategy consisting of cancer antigen-containing liposomes conjugated with CD169- or DC-SIGN-specific nanobodies (single domain antibodies) to achieve specific uptake by APCs. Our studies demonstrate efficient nanobody liposome uptake by human and murine CD169+ and DC-SIGN+ APCs in vitro and in vivo when compared to control liposomes or liposomes with natural ligands for CD169 and DC-SIGN. Uptake of CD169 nanobody liposomes resulted in increased T cell activation by human APCs and stimulated naive T cell priming in mouse models. In conclusion, while nanobody liposomes have previously been utilized to direct drugs to tumors, here we show that nanobody liposomes can be applied as vaccination strategy that can be extended to other receptors on APCs in order to elicit a potent immune response against tumor antigens.


Assuntos
Células Apresentadoras de Antígenos , Vacinas Anticâncer , Lipossomos , Camundongos Endogâmicos C57BL , Anticorpos de Domínio Único , Linfócitos T , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/administração & dosagem , Humanos , Linfócitos T/imunologia , Camundongos , Células Apresentadoras de Antígenos/imunologia , Feminino , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/administração & dosagem , Ativação Linfocitária/efeitos dos fármacos
2.
J Control Release ; 331: 309-320, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33493613

RESUMO

Cancer vaccines aim to efficiently prime cytotoxic CD8+ T cell responses which can be achieved by vaccine targeting to dendritic cells. CD169+ macrophages have been shown to transfer antigen to dendritic cells and could act as an alternative target for cancer vaccines. Here, we evaluated liposomes containing the CD169/Siglec-1 binding ligand, ganglioside GM3, and the non-binding ligand, ganglioside GM1, for their capacity to target antigens to CD169+ macrophages and to induce immune responses. CD169+ macrophages demonstrated specific uptake of GM3 liposomes in vitro and in vivo that was dependent on a functional CD169 receptor. Robust antigen-specific CD8+ and CD4+ T and B cell responses were observed upon intravenous administration of GM3 liposomes containing the model antigen ovalbumin in the presence of adjuvant. Immunization of B16-OVA tumor bearing mice with all liposomes resulted in delayed tumor growth and improved survival. The absence of CD169+ macrophages, functional CD169 molecules, and cross-presenting Batf3-dependent dendritic cells (cDC1s) significantly impaired CD8+ T cell responses, while B cell responses were less affected. In conclusion, we demonstrate that inclusion of GM3 in liposomes enhance immune responses and that splenic CD169+ macrophages and cDC1s are required for induction of CD8+ T cell immunity after liposomal vaccination.


Assuntos
Lipossomos , Linfócitos T , Animais , Linfócitos T CD8-Positivos , Células Dendríticas , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...