Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1348341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516003

RESUMO

Objective: Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are invasive methods to assess the functional significance of intermediate severity coronary lesions. Both indexes have been extensively validated in clinical trials in guiding revascularisation in patients with stable ischaemic heart disease undergoing percutaneous coronary intervention (PCI) with improved clinical outcomes. However, the role of these tools in coronary artery bypass grafting (CABG) is less clear. Methods: A meta-analysis of randomised trials and observational studies was carried out to help in determining the optimal strategy for assessing lesion severity and selecting graft targets in patients undergoing CABG. Electronic searches were carried out on Embase, MEDLINE, and Web of Science. A group of four authors independently screened and then assessed the retrieved records. Cochrane's Risk of Bias and Robins-I tools were used for bias assessment. A survey was conducted among surgeons and cardiologists to describe current attitudes towards the preoperative use of functional coronary investigations in practice. Results: Clinical outcomes including mortality at 30 days, perioperative myocardial infarction, number of grafts, incidence of stroke, rate of further need for revascularisation, and patient-reported quality of life did not differ in CABG guided by functional testing from those guided by traditional angiography.The survey revealed that in half of the surgical and cardiology units functional assessment is performed in CABG patients; there is a general perception that functional testing has improved patient care and its use would clarify the role of moderate coronary lesions that often need multidisciplinary rediscussions; moderate stenosis are felt to be clinically relevant; and anatomical considerations need to be taken into account together with functional assessment. Conclusions: At present, the evidence to support the routine use of functional testing in intermediate lesions for planning CABG is currently insufficient. The pooled data currently available do not show an increased risk in mortality, myocardial injury, and stroke in the FFR/iFR-guided group. Further trials with highly selected populations are needed to clarify the best strategy. Systematic Review Registration: ClinicalTrials.gov, identifier (CRD42023414604).

2.
IEEE Trans Biomed Eng ; 61(6): 1902-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24845301

RESUMO

Computational fluid dynamics (CFD) is increasingly being developed for the diagnostics of arterial diseases. Imaging methods such as computed tomography (CT) and angiography are commonly used. However, these have limited spatial resolution and are subject to movement artifact. This study developed a new approach to generate CFD models by combining high-fidelity, patient-specific coronary anatomy models derived from optical coherence tomography (OCT) imaging with patient-specific pressure and velocity phasic data. Additionally, we used a new technique which does not require the catheter to be used to determine the centerline of the vessel. The CFD data were then compared with invasively measured pressure and velocity. Angiography imaging data of 21 vessels collected from 19 patients were fused with OCT visualizations of the same vessels using an algorithm that produces reconstructions inheriting the in-plane (10 µm) and longitudinal (0.2 mm) resolution of OCT. Proximal pressure and distal velocity waveforms ensemble averaged from invasively measured data were used as inlet and outlet boundary conditions, respectively, in CFD simulations. The resulting distal pressure waveform was compared against the measured waveform to test the model. The results followed the shape of the measured waveforms closely (cross-correlation coefficient = 0.898 ± 0.005, ), indicating realistic modeling of flow resistance, the mean of differences between measured and simulated results was -3. 5 mmHg, standard deviation of differences (SDD) = 8.2 mmHg over the cycle and -9.8 mmHg, SDD = 16.4 mmHg at peak flow. Models incorporating phasic velocity in patient-specific models of coronary anatomy derived from high-resolution OCT images show a good correlation with the measured pressure waveforms in all cases, indicating that the model results may be an accurate representation of the measured flow conditions.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Angiografia Coronária/métodos , Estenose Coronária/patologia , Imageamento Tridimensional/métodos , Tomografia de Coerência Óptica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estenose Coronária/diagnóstico por imagem , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pessoa de Meia-Idade
3.
Int J Cardiol ; 168(4): 3623-8, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23714592

RESUMO

BACKGROUND: The aim of this study was to evaluate the impact of stent design and side branch access on final strut apposition during bifurcation stenting. METHODS AND RESULTS: A series of 6 different commercially available Drug Eluting Stents (DES) (n=42) were deployed in an identical model of a coronary bifurcation. Kissing Balloon (KB) optimization was performed after either proximal or distal recrossing of the guidewire and results were analyzed by micro-Computed-Tomography. Stent design only had a minor impact on side branch lumen area free of stent struts. Similar rate of strut malapposition was observed within the bifurcation when a consistent KB optimization protocol and an optimal distal recrossing of the wire to reaccess the side branch (SB) are followed. Conversely, proximal instead of distal cell recrossing toward the side branch produced a significant lower area of the side branch lumen free of struts than an optimal distal recrossing (60.3±7.1% versus 81.1±8.0%, p<0.0001), as well as a higher rate of strut malapposed toward the SB ostium (40.6±6.0% versus 26.0±5.7%, p=0.0005). CONCLUSIONS: Optimal cell recrossing of the guidewire may be critical to ensure successful stent optimization in bifurcation PCI.


Assuntos
Velocidade do Fluxo Sanguíneo , Simulação por Computador , Stents Farmacológicos , Desenho de Equipamento/métodos , Modelos Cardiovasculares , Simulação por Computador/normas , Stents Farmacológicos/normas , Desenho de Equipamento/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...