Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(32): 7504-7513, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35943183

RESUMO

Host-guest architectures provide ideal systems for investigating site-specific physical and chemical effects. Condensation events in nanometer-sized confinements are particularly interesting for the investigation of intermolecular and molecule-surface interactions. They may be accompanied by conformational adjustments representing induced fit packing patterns. Here, we report that the symmetry of small clusters formed upon condensation, their registry with the substrate, their lateral packing, and their adsorption height are characteristically modified by the packing of cycloalkanes in confinements. While cyclopentane and cycloheptane display cooperativity upon filling of the hosting pores, cyclooctane and to a lesser degree cyclohexane diffusively redistribute to more favored adsorption sites. The dynamic behavior of cyclooctane is surprising at 5 K given the cycloalkane melting point of >0 °C. The site-specific modification of the interaction and behavior of adsorbates in confinements plays a crucial role in many applications of three-dimensional porous materials as gas storage agents or catalysts/biocatalysts.

2.
Nanoscale ; 11(11): 4895-4903, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30821800

RESUMO

Diffusion, nucleation and growth provide the fundamental access to control nanostructure growth. In this study, the temperature activated diffusion of Xe at and between different compartments of an on-surface metal organic coordination network on Cu(111) has been visualized in real space. Xe atoms adsorbed at lower energy sites become mobile with increased temperature and gradually populate energetically more favourable binding sites or remain in a delocalized 'fluid' form confined to diffusion along a topological subset of the on-surface network. These diffusion pathways can be studied individually under kinetic control via the chosen thermal energy kT of the sample and are determined by the network and sample architecture. The spatial distribution of Xe in its different modes of mobility and the time scales of the motion is revealed by Scanning Tunneling Microscopy (STM) at variable temperatures up to 40 K and subsequent cooling to 4 K. The system provides insight into the diffusion of a van der Waals gas on a complex structured surface and its nucleation and coarsening/growth into larger condensates at elevated temperature under thermodynamic conditions.

3.
Small ; 15(3): e1803169, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30556276

RESUMO

This study reports on "phase" transitions of Xe condensates in on-surface confinements induced by temperature changes and local probe excitation. The pores of a metal-organic network occupied with 1 up to 9 Xe atoms are investigated in their propensity to undergo "condensed solid" to "confined fluid" transitions. Different transition temperatures are identified, which depend on the number of Xe atoms in the condensate and relate to the stability of the Xe clustering in the condensed "phase." This work reveals the feature-rich behavior of transitions of confined planar condensates, which provide a showcase toward future "phase-transition" storage media patterned by self-assembly. This work is also of fundamental interest as it paves the way to real space investigations of reversible solid to fluid transitions of magic cluster condensates in an array of extremely well-defined quantum confinements.

4.
J Am Chem Soc ; 140(8): 2933-2939, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29421874

RESUMO

A comparative investigation of crystal growth from solution and on-surface assembly in vacuo between copper and three 4'-(2-R-pyrimidin-5-yl)-4,2':6',4''-terpyridines, with R = H (1), Me (2), or Et (3), is presented. In solution, ligand 3 combines with copper(II) acetate or copper(I) triflate in MeOH solution to give [Cu2(OAc)4(3)]n or {[Cu(3)(OMe)(MeOH)][CF3SO3]·MeOH}n. In [Cu2(OAc)4(3)]n, paddle-wheel {Cu2(µ-OAc)4} nodes direct the assembly of one-dimensional (1D) zigzag chains which pack into two-dimensional (2D) sheets. In {[Cu(3)(OMe)(MeOH)][CF3SO3]·MeOH}n, the solvent is a ligand and also generates {Cu2(µ-OMe)2} units which function as planar 4-connecting nodes to generate a 2D (4,4) net with ligand 3. On Au(111) or Cu(111) surfaces in vacuo, no additional solvent or anions are involved in the assembly. The different substituents in 1, 2, or 3 allow precise molecular resolution imaging in scanning tunneling microscopy. On Au(111), 1 and 2 assemble into close-packed assemblies, while 3 forms a regular porous network. The deposition of Cu adatoms results in reorganization leading to ladder-shaped surface metal-organic motifs. These on-surface coordination assemblies are independent of the 4'-substituent in the 4,2':6',4''-tpy and are reproduced on Cu(111) where Cu adatoms are available during the deposition and relaxation process at room temperature. Upon annealing at elevated temperatures, the original surface assemblies of 1 and 3 are modified and a transition from ladders into rhomboid structures is observed; for 2, a further quasi-hexagonal nanoporous network is observed.

5.
ACS Nano ; 12(1): 768-778, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29272579

RESUMO

Quantum devices depend on addressable elements, which can be modified separately and in their mutual interaction. Self-assembly at surfaces, for example, formation of a porous (metal-) organic network, provides an ideal way to manufacture arrays of identical quantum boxes, arising in this case from the confinement of the electronic (Shockley) surface state within the pores. We show that the electronic quantum box state as well as the interbox coupling can be modified locally to a varying extent by a selective choice of adsorbates, here C60, interacting with the barrier. In view of the wealth of differently acting adsorbates, this approach allows for engineering quantum states in on-surface network architectures.

6.
Nat Commun ; 8: 15388, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28530247

RESUMO

Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice. The lattice consists of paramagnetic hexadeca-fluorinated iron phthalocyanine (FeFPc) and manganese phthalocyanine (MnPc) molecules co-assembled into a checkerboard pattern on single-crystalline Au(111) substrates. Remarkably, the remanent magnetic moments are oriented in the out-of-plane direction with significant contribution from orbital moments. First-principles calculations reveal that the FeFPc-MnPc antiferromagnetic nearest-neighbour coupling is mediated by the Ruderman-Kittel-Kasuya-Yosida exchange interaction via the Au substrate electronic states. Our findings suggest the use of molecular frameworks to engineer novel low-dimensional magnetically ordered materials and their application in molecular quantum devices.

7.
Nano Lett ; 17(3): 1956-1962, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28157314

RESUMO

We show that highly ordered two-dimensional (2D) chessboard arrays consisting of a periodic arrangement of two different molecules can be obtained by self-assembly of unsubstituted metal-phthalocyanines (metal-Pcs) on a suitable substrate serving as the template. Specifically, CuPc + MnPc and CuPc + CoPc mixtures sort into highly ordered Cu/Mn and Cu/Co chessboard arrays on the square p(10 × 10) reconstruction of bismuth on Cu(100). Such created bimolecular chessboard assemblies emerge from the site-specific interactions between the central transition-metal ions and the periodically reconstructed substrate. This work provides a conceptually new approach to induce 2D chessboard patterns in that no functionalization of the molecules is needed.

8.
Small ; 12(28): 3757-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27276517

RESUMO

A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

9.
Chem Commun (Camb) ; 51(61): 12297-300, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26138906

RESUMO

The use of divergent, V-shaped, 4,2':6',4''-terpyridine building blocks that self-assemble into hydrogen-bonded domains and upon addition of copper atoms undergo metallation with concomitant transformation into a coordination network is described; multiple energetically similar structural motifs are observed in both hydrogen-bonded and adatom-coordinated networks.

10.
Nat Commun ; 6: 6071, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25608225

RESUMO

Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.

11.
J Am Chem Soc ; 136(26): 9355-63, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24960576

RESUMO

The formation of on-surface coordination polymers is controlled by the interplay of chemical reactivity and structure of the building blocks, as well as by the orientating role of the substrate registry. Beyond the predetermined patterns of structural assembly, the chemical reactivity of the reactants involved may provide alternative pathways in their aggregation. Organic molecules, which are transformed in a surface reaction, may be subsequently trapped via coordination of homo- or heterometal adatoms, which may also play a role in the molecular transformation. The amino-functionalized perylene derivative, 4,9-diaminoperylene quinone-3,10-diimine (DPDI), undergoes specific levels of dehydrogenation (-1 H2 or -3 H2) depending on the nature of the present adatoms (Fe, Co, Ni or Cu). In this way, the molecule is converted to an endo- or an exoligand, possessing a concave or convex arrangement of ligating atoms, which is decisive for the formation of either 1D or 2D coordination polymers.

12.
J Am Chem Soc ; 135(41): 15270-3, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24090281

RESUMO

Chiral recognition as well as chirality transfer in supramolecular self-assembly and on-surface coordination is studied for the enantiopure 6,13-dicyano[7]helicene building block. It is remarkable that, with this helical molecule, both H-bonded chains and metal-coordinated chains can be formed on the same substrate, thereby allowing for a direct comparison of the chain bonding motifs and their effects on the self-assembly in experiment and theory. Conformational flexure and both adsorbate/adsorbent and intermolecular interactions can be identified as factors influencing the chiral recognition at the binding site. The observed H-bonded chains are chiral, however, the overall appearance of Cu-coordinated chains is no longer chiral. The study was performed via scanning tunneling microscopy, X-ray-photoelectron spectroscopy and density functional theory calculations. We show a significant influence of the molecular flexibility and the type of bonding motif on the chirality transfer in the 1D self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA