Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Imaging Sci Dent ; 53(1): 21-26, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006789

RESUMO

Purpose: A fully digital approach to oral prosthodontic rehabilitation requires the possibility of combining (i.e., registering) digital documentation from different sources. This becomes more complex in an edentulous jaw, as fixed dental markers to perform reliable registration are lacking. This validation study aimed to evaluate the reproducibility of 1) intraoral scanning and 2) soft tissue-based registration of an intraoral scan with a cone-beam computed tomography (CBCT) scan for a fully edentulous upper jaw. Materials and Methods: Two observers independently performed intraoral scans of the upper jaw in 14 fully edentulous patients. The palatal vault of both surface models was aligned, and the inter-observer variability was assessed by calculating the mean inter-surface distance at the level of the alveolar crest. Additionally, a CBCT scan of all patients was obtained and a soft tissue surface model was generated using patient-specific gray values. This CBCT soft tissue model was registered with the intraoral scans of both observers, and the intraclass correlation coefficient (ICC) was calculated to evaluate the reproducibility of the registration method. Results: The mean inter-observer deviation when performing an intraoral scan of the fully edentulous upper jaw was 0.10 ± 0.09 mm. The inter-observer agreement for the soft tissue-based registration method was excellent (ICC=0.94; 95% confidence interval, 0.81-0.98). Conclusion: Even when teeth are lacking, intraoral scanning of the jaw and soft tissue-based registration of an intraoral scan with a CBCT scan can be performed with a high degree of precision.

2.
Surg Innov ; 26(1): 86-94, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30261829

RESUMO

The implementation of augmented reality (AR) in image-guided surgery (IGS) can improve surgical interventions by presenting the image data directly on the patient at the correct position and in the actual orientation. This approach can resolve the switching focus problem, which occurs in conventional IGS systems when the surgeon has to look away from the operation field to consult the image data on a 2-dimensional screen. The Microsoft HoloLens, a head-mounted AR display, was combined with an optical navigation system to create an AR-based IGS system. Experiments were performed on a phantom model to determine the accuracy of the complete system and to evaluate the effect of adding AR. The results demonstrated a mean Euclidean distance of 2.3 mm with a maximum error of 3.5 mm for the complete system. Adding AR visualization to a conventional system increased the mean error by 1.6 mm. The introduction of AR in IGS was promising. The presented system provided a solution for the switching focus problem and created a more intuitive guidance system. With a further reduction in the error and more research to optimize the visualization, many surgical applications could benefit from the advantages of AR guidance.


Assuntos
Impressão Tridimensional , Cirurgia Assistida por Computador/métodos , Interface Usuário-Computador , Desenho de Equipamento , Humanos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...