Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 251: 126302, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573909

RESUMO

Pseudomonas species are among the main pathogens causing rainbow trout infections. The present study provides a simple, green, sustainable, and rapid technique to synthesize of biogenic alginate-capped silver nanoparticles (Alg-Ag NPs) suitable for the treatment of Pseudomonas infections. It has been shown that the mechanism (aggregative or autocatalytic) of Alg-Ag NPs formation depended on Alg concentration and the heating approach used. The rate constants and activation energy were calculated. Alg-Ag NPs were characterized by UV-Vis, FTIR, XRD, TEM, AFM, XPS, and DLS. The optimal conditions for the fabrication of spherically-shaped (17-19 nm) and negatively-charged (zeta-potential <-50 mV) Alg-Ag NPs, which are stable during 9 months, included hot-plate assisted synthesis at 100 °C in diluted (1 mg/mL) Alg solutions. In vitro studies showed that Alg-Ag NPs exhibited prominent antimicrobial activity against collection Pseudomonas strains (inhibition zones ranged from 9.0 ± 1.0 to 19.0 ± 1.0 mm), with no significant loss of antibacterial efficacy after 9 months of storage. AFM analysis confirmed that the antibacterial effect of Alg-Ag NPs dealt with the direct nanomechanical disrupting of bacterial cells. The ability of Alg-Ag NPs to inhibit the growth of virulent P.aeruginosa, P.fluorescens and P. putida strains isolated from infected rainbow trout was evaluated. All tested strains were susceptible to Alg(10)-Ag NPs, while Alg(1)-Ag NPs demonstrated a limited strain-specific antibacterial effect. The obtained data displayed the prospects for the application of biogenic Alg-Ag NPs to create novel delivery systems for combating Pseudomonas infections in rainbow trout.

2.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808716

RESUMO

Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films-water-assisted self-assembly ("breath figure") and spin-coating techniques. The water-assisted technique made it possible to obtain porous films with a self-assembled pore structure, which is dependent on the monomer composition of a polymer along with its molecular weight and the technique parameters (distance from the nozzle, volume, and polymer concentration in working solution). Their pore morphologies were evaluated and their hydrophobicity was examined. Mesenchymal stem cells (MSCs) isolated from bone marrow were cultivated on a porous film surface. MSCs' attachment differed markedly depending on surface morphology. On strip-formed stamp films, MSCs elongated along the structure, however, they interacted with a larger area of film surface. The honeycomb films and column type films did not set the direction of extrusion, but cell flattening depended on structure topography. Thus, stem cells can "feel" the various surface morphologies of self-assembled honeycomb films and change their behavior depending on it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...